
Commissione Studi e Progetti

QUADERNO N° 41

SERVIZI FERROVIARI VIAGGIATORI SULLA LUNGA DISTANZA Excursus mondiale e focus italiano

High-Speed Rail nel mondo

Giovanni Saccà

Nazioni aderenti UIC ■ attive associate affiliate

Nazioni aderenti all'Unione Internazionale delle Ferrovie5 (UIC)

HIGH-SPEED RAIL: HSR

Sebbene non esista un unico standard applicabile in tutto il mondo, le linee costruite per gestire velocità superiori a 250 km/h o linee aggiornate superiori a 200 km/h sono ampiamente considerate ad alta velocità.

I treni ad alta velocità circolano per lo più su linee ferroviarie a scartamento standard (1435 mm) che hanno rotaie saldate in modo continuo e ampi raggi di curvatura. In Russia e nell'Uzbekistan si sta sviluppando la HSR a scartamento russo (1520 mm); non ci sono treni ad alta velocità a scartamento ridotto.

La direttiva dell'Unione europea 96/48/CE definisce il trasporto ferroviario ad alta velocità in termini di:

- Infrastruttura: binario costruito appositamente per i viaggi ad alta velocità o appositamente adattato per i viaggi ad alta velocità.
- Limite minimo di velocità: Velocità minima di 250 km/h sulle linee appositamente costruite per l'alta velocità e di circa 200 km/h sulle linee esistenti che sono state appositamente potenziate. Questo deve valere per almeno una sezione della linea. Il materiale rotabile deve essere in grado di raggiungere una velocità di almeno 200 km/h per essere considerato ad alta velocità.
- Condizioni operative: Il materiale rotabile deve essere progettato insieme alla sua infrastruttura per garantire la completa compatibilità, sicurezza e qualità del servizio.

FEDERMANAGER Nazioni aderenti UIC attive associate affiliate

Nazioni aderenti all'Unione Internazionale delle Ferrovie5 (UIC)

HIGH-SPEED RAIL: HSR

Sebbene non esista un unico standard applicabile in tutto il mondo, le linee costruite per gestire velocità superiori a 250 km/h o linee aggiornate superiori a 200 km/h sono ampiamente considerate ad alta velocità.

I treni ad alta velocità circolano per lo più su linee ferroviarie a scartamento standard (1435 mm) che hanno rotaie saldate in modo continuo e ampi raggi di curvatura. In Russia e nell'Uzbekistan si sta sviluppando la HSR a scartamento russo (1520 mm); non ci sono treni ad alta velocità a scartamento ridotto.

L'Unione Internazionale delle Ferrovie (UIC) identifica tre categorie di ferrovie ad alta velocità:

- Categoria I: Nuove linee ferroviarie appositamente costruite per le alte velocità, che consentono una velocità massima di marcia di almeno 250 km/h.
- Categoria II: Linee ferroviarie esistenti appositamente adattate per le alte velocità, che consentono una velocità massima di marcia di almeno 200 km/h.
- Categoria III: Binari esistenti appositamente adattati per le alte velocità, che consentono una velocità massima di marcia di almeno 200 km/h, ma con alcuni tratti che hanno una velocità ammissibile inferiore (ad esempio a causa di vincoli topografici o di passaggio attraverso aree urbane).

Country	Continent	Operational length (km)	Under construction (km) —	Total length (km)	Density Length / 100,000 Top speed (m/km²) people (km)[a] (km/h)		Electrification	Track gauge (mm)	Opened	
		*	· · ·		·	· ·	*	V	· ·	7
China	Asia	45000		70.000	4,70	,		25 kV 50 Hz	1435	
Spain	Europe	3966	1034	5.000	7.84			3 kV DC; 25 kV 50 Hz	1435; 1668	+
Japan	Asia	3067	498	3.565	9.07	2.5		25 kV 50/60 Hz	1435	
	Europe	2800	200	3.000	4.35	4.32		25 kV 50 Hz	1435	
	Europe	2214	230	2.444	9.11	3.27		25 kV 50 Hz	1435	+
Germany	Europe	1658	350		4.64			15 kV 16.7 Hz	1435	
Finland	Europe	1120	200		3.31	20.2		25 kV 50 Hz	1524	
Italy	Europe	1117	900	2.017	3.71	1.9		25 kV 50 Hz; 3 kV DC	1435	1977
Turkey	Asia	919	1578	2.497	0.8			25 kV 50 Hz	1435	2009
South Korea	Asia	887	500	1.387	8.84	1.71	320	25 kV 60 Hz	1435	2004
Sweden	Europe	860		1.136	1.91	8.1		15 kV 16.7 Hz	1435	1993
Greece	Europe	672	30	702	5.09	6.5	200	25 kV 50 Hz	1435	2022
Russia	Europe	650	680	1.330	0.04	0.42	250	3 kV DC; 25 kV 50 Hz	1520	1984
Portugal	Europe	610	90	700	7.27	5.95	220	25 kV 50 Hz	1668	1999
Uzbekistan	Asia	600	465	1.065	1.34	1.71	250	20 kV 50 Hz	1520	2011
Poland	Europe	547	0	547	1.13	3.16	200	3 kV DC	1435	2014
Saudi Arabia	Asia	450	0	450	0.21	1.22	300	25 kV 50 Hz	1435	2018
Taiwan	Asia	350	0	350	9.67	1.46	300	25 kV 60 Hz	1435	2007
Belgium	Europe	326	3	329	8.25	2.79	300	25 kV 50 Hz	1435	1997
Austria	Europe	283	280	563	3.37	3.16	230	15 kV 16.7 Hz	1435	1990
Norway	Europe	224	55	279	0.69	4.09	210	15 kV 16.7 Hz	1435	1998
Morocco	Africa	186	375	561	0.26	0.49	320	25 kV 50 Hz	1435	2018
Netherlands	Europe	175	0	175	4.18	1.95	300	25 kV 50 Hz	1435	2009
Switzerland	Europe	164	0	164	3.97	1.86	230	15 kV 16.7 Hz	1435	2005
Indonesia	Asia	143	0	143	0.08	0.05	350	27.5 kV 50 Hz	1435	2023
United States	North America	137	1600	1.737	0.01	0.04	240	Multiple	1435	2000
Serbia	Europe	70	338	408	0.79	0.98	200	25 kV 50 Hz	1435	2022
Denmark	Europe	60	100	160	0.68	0.98	200	25 kV 50 Hz	1435	2019
Hong Kong	Asia	26	0	26	23.51	0.35	200	25 kV 50 Hz	1435	2018

Fonte: https://en.wikipedia.org/wiki/List_of_high-speed_railway_lines#cite_note-yahoo_top20-25

Country	Continent	Operational length (km)	Under construction (km)	Total length (km)	Density (m/km²)	Length / 100,000 people (km)[{-	Top speed (km/h)	Electrification	Track gauge (mm)	Opened
Morocco	Africa	186	375	561	0.26	0.49	320	25 kV 50 Hz	1435	2018
China	Asia	45000	25.000	70.000	4,70	3,16	350	25 kV 50 Hz	1435	2008
Japan	Asia	3067	498	3.565	9.07	2.5	320	25 kV 50/60 Hz	1435	1964
Turkey	Asia	919	1578	2.497	0.8	0.07	300	25 kV 50 Hz	1435	2009
South Korea	Asia	887	500	1.387	8.84	1.71	320	25 kV 60 Hz	1435	2004
Uzbekistan	Asia	600	465	1.065	1.34	1.71	250	20 kV 50 Hz	1520	2011
Saudi Arabia	Asia	450	0	450	0.21	1.22	300	25 kV 50 Hz	1435	2018
Taiwan	Asia	350	0	350	9.67	1.46	300	25 kV 60 Hz	1435	2007
Indonesia	Asia	143	0	143	0.08	0.05	350	27.5 kV 50 Hz	1435	2023
Hong Kong	Asia	26	0	26	23.51	0.35	200	25 kV 50 Hz	1435	2018
Spain	Europe	3966	1034	5.000	7.84	8.42	310	3 kV DC; 25 kV 50 Hz	1435; 1668	1992
France	Europe	2800	200	3.000	4.35	4.32	320	25 kV 50 Hz	1435	1981
United Kingdom	Europe	2214	230	2.444	9.11	3.27	300	25 kV 50 Hz	1435	1976
Germany	Europe	1658	350	2.008	4.64	1.99	300	15 kV 16.7 Hz	1435	1991
Finland	Europe	1120	200	1.320	3.31	20.2	220	25 kV 50 Hz	1524	2006
Italy	Europe	1117	900	2.017	3.71	1.9	300	25 kV 50 Hz; 3 kV DC	1435	1977
Sweden	Europe	860	276	1.136	1.91	8.1	205	15 kV 16.7 Hz	1435	1993
Greece	Europe	672	30	702	5.09	6.5	200	25 kV 50 Hz	1435	2022
Russia	Europe	650	680	1.330	0.04	0.42	250	3 kV DC; 25 kV 50 Hz	1520	1984
Portugal	Europe	610	90	700	7.27	5.95	220	25 kV 50 Hz	1668	1999
Poland	Europe	547	0	547	1.13	3.16	200	3 kV DC	1435	2014
Belgium	Europe	326	3	329	8.25	2.79	300	25 kV 50 Hz	1435	1997
Austria	Europe	283	280	563	3.37	3.16	230	15 kV 16.7 Hz	1435	1990
Norway	Europe	224	55	279	0.69	4.09	210	15 kV 16.7 Hz	1435	1998
Netherlands	Europe	175	0	175	4.18	1.95	300	25 kV 50 Hz	1435	2009
Switzerland	Europe	164		164	3.97	1.86		15 kV 16.7 Hz	1435	2005
Serbia	Europe	70	338	408	0.79	0.98	200	25 kV 50 Hz	1435	2022
Denmark	Europe	60	100	160	0.68	0.98	200	25 kV 50 Hz	1435	2019
United States	North America	137	1600	1.737	0.01	0.04	240	Multiple	1435	2000

Fonte: https://en.wikipedia.org/wiki/List of high-speed railway lines#cite note-yahoo top20-25

FEDERMANAGER

High-Speed Railway lines

2024

Continent	Operational length (km)	Under construction (km)	Total length (km)
Africa	186	375	561
Asia	51.442	28.041	79.483
Europe	17.516	4.766	22.282
North America	137	1.600	1.737
	69.281	34.782	104.063

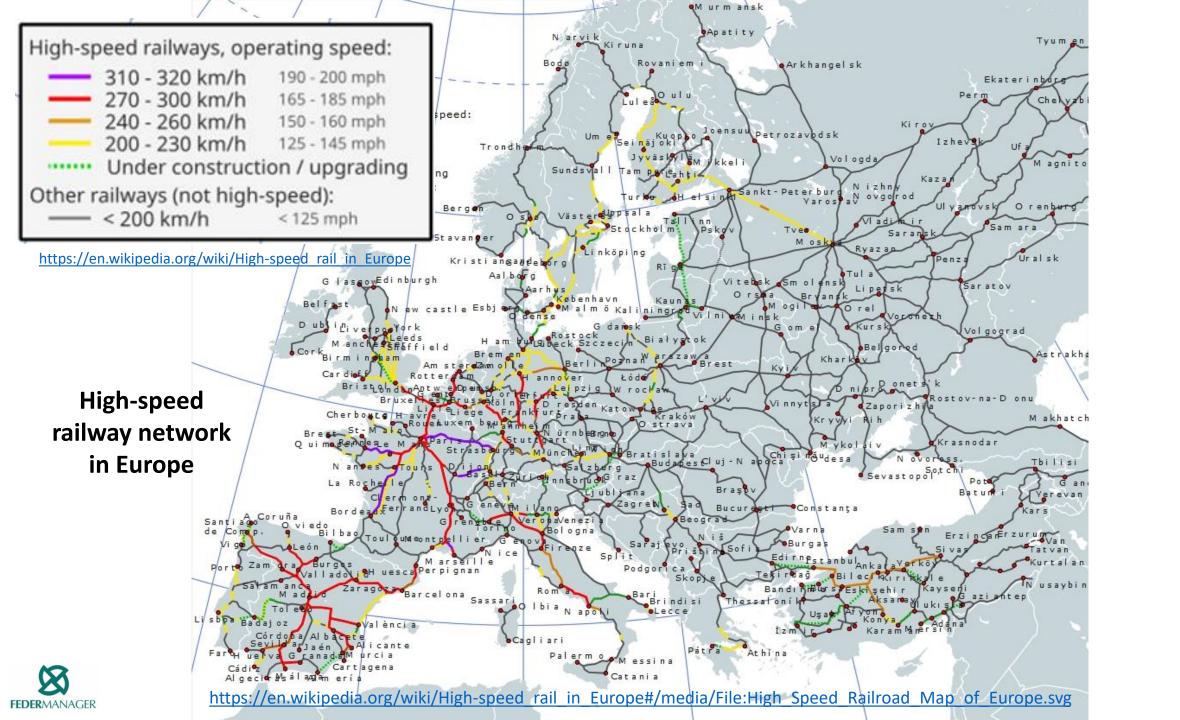
Area geografica	In esercizio (km)	In costruzione (km)	Pianificati a breve (km)	Pianificati a lungo termine (km)	Totale (km)
Europa	11.990	3.063	5.913	3.316	24.282
Asia-Pacifico	44.428	14.368	6.893	18.320	84.009
Africa	186		2.210	4.195	6.591
Medio Oriente	1.501	2.006	3.139	1.831	8.477
Nord America	735	274	1.488	5.307	7.804
America Latina			-	638	638
Totale	58.840	19.711	19.643	33.607	131.801

Fonte: Dati UIC 2022 – ATLAS High-Speed Rail

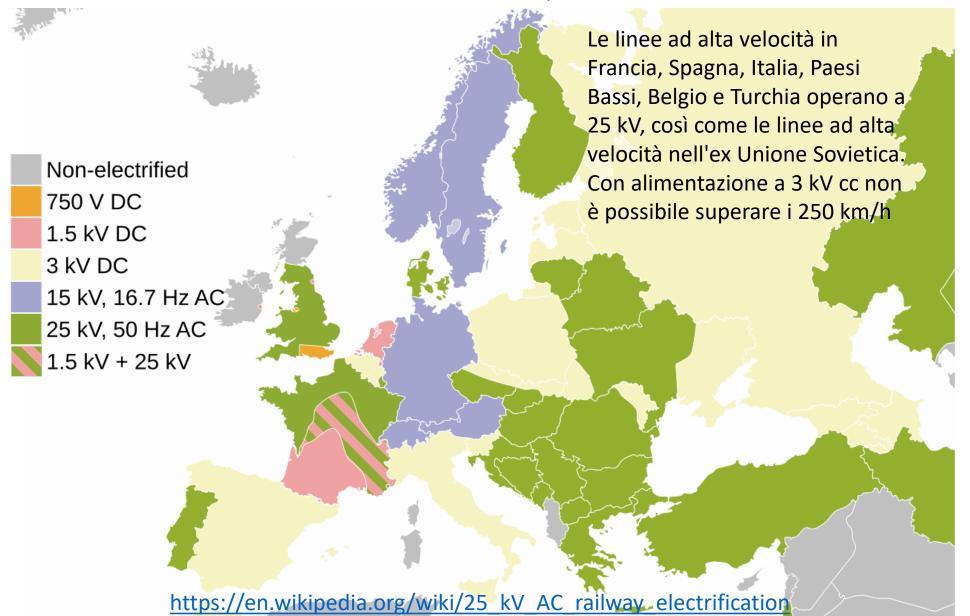
TEN-T-revision-2023 **FEDER**MANAGER **TENtec**

Map Finder Chart for European Transport Corridors

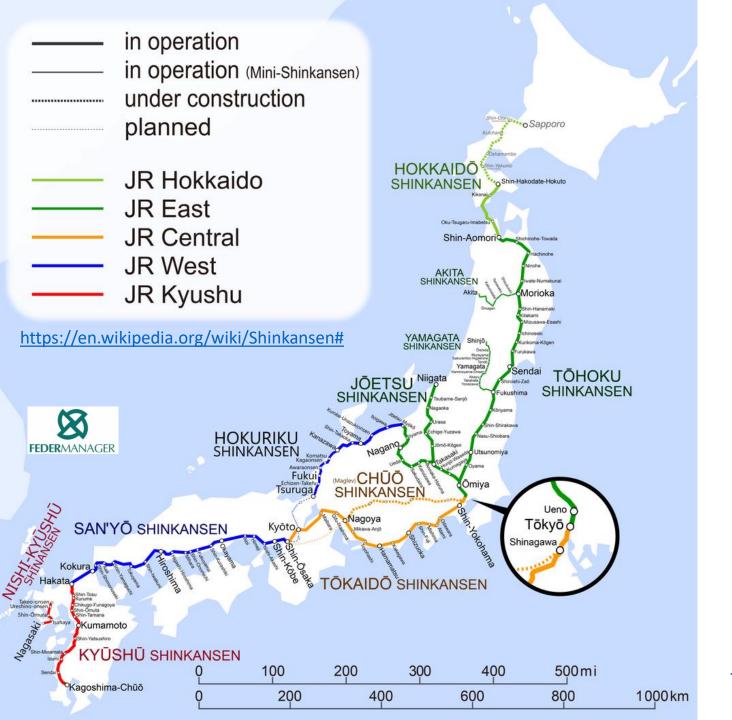
La rete AV europea è un sottoinsieme della Rete TEN-T di recentissima revisione: <u>TEN-T-revision-2023-annex-3.pdf</u> (europa.eu)


Area geografica	In esercizio (km)	In costruzione (km)	Pianificati a breve (km)	Pianificati a lungo termine (km)	Totale (km)
Europa	11.990	3.063	5.913	3.316	24.282

Fonte: Dati UIC 2022 – ATLAS High-Speed Rail


- ATLANTIC
- NORTH SEA RHINE –
 MEDITERRANEAN
- NORTH SEA BALTIC
- SCANDINAVIAN MEDITERRANEAN
- BALTIC SEA ADRIATIC SEA
- RHINE DANUBE

- MEDITERRANEAN
- WESTERN BALKANS EASTERN
 MEDITERRANEAN
- BALTIC SEA BLACK SEA AEGEAN SEA


8

Sistemi di elettrificazione ferroviaria utilizzati in Europa: 750 V CC 1,5 kV CC 3 kV CC 15 kV CA 25 kV CA Le linee ad alta velocità in Francia, Spagna, Italia, Paesi Bassi, Belgio e Turchia funzionano a meno di 25 kV, così come le linee ad alta potenza nell'ex Unione Sovietica

Shinkansen 1964

Nuovo tracciato ferroviario

L'approvazione del progetto dello Shinkansen da parte del governo giapponese è del dicembre 1958 e la costruzione del primo segmento del Tōkaidō Shinkansen tra Tokyo e Osaka iniziò nell'aprile 1959.

L'inaugurazione avvenne il 1° ottobre 1964, in concomitanza con l'avvio dei Giochi Olimpici di Tokyo: il Tokaido Shinkansen viaggiava ad una velocità di 210 km/h – all'epoca la velocità più elevata nel mondo per un treno in servizio regolare – il che consentiva un tempo di percorrenza tra Tokyo e Shin-Osaka di 3 ore e 10 minuti.

Sistema di alimentazione 25 kV AC, 60 Hz

Scartamento standard 1,435 mm

https://en.wikipedia.org/wiki/Class 1000 Shinkansen

High-speed lines in commercial operation in Japan

LINE	MAXIMUM SPEED (k	m/h) YEAR	DISTANCE (KILOMETRES)
Tokyo - Shin Osaka (Tokaido)	285	1964	515
Shin Osaka - Okayama (San-yo)	300	1972	161
Okayama - Hakata (San-yo)	300	1975	393
Omiya - Utsunomiya (Tohoku)	275	1982	79
Utsunomiya - Morioka (Tohoku)	320	1982	426
Omiya - Niigata (Joetsu)	240	1982	270
Ueno - Omiya (Tohoku)	130	1985	28
Tokyo - Ueno (Tohoku)	110	1991	4
Fukushima - Yamagata (Yamagata)	130	1992	87
Morioka - Akita (Akita)	130	1997	127
Takasaki - Nagano (Hokuriku)	260	1997	117
Yamagata - Shinjo (Yamagata)	130	1999	62
Morioka - Hachinohe (Tohoku)	260	2002	97
Shin Yatsuhiro - Kagoshima Chuo (Kyushu)	260	2004	127
Hachinohe - Shin Aomori (Tohoku)	260	2010	82
Hakata - Shin Yatsushiro (Kyushu)	260	2011	130
Nagano - Kanazawa (Hokuriku)	260	2015	228
Shin Aomori - Shin Hakodate (Hokkaido)	260	2016	149
Fonto: Dati IIIC 2022 ATI AS High Speed Bail			Total km = 3 081

FEDERMANA

Fonte: Dati UIC 2022 – ATLAS High-Speed Rail

Total km = 3,081

12

High-speed lines under construction in Japan

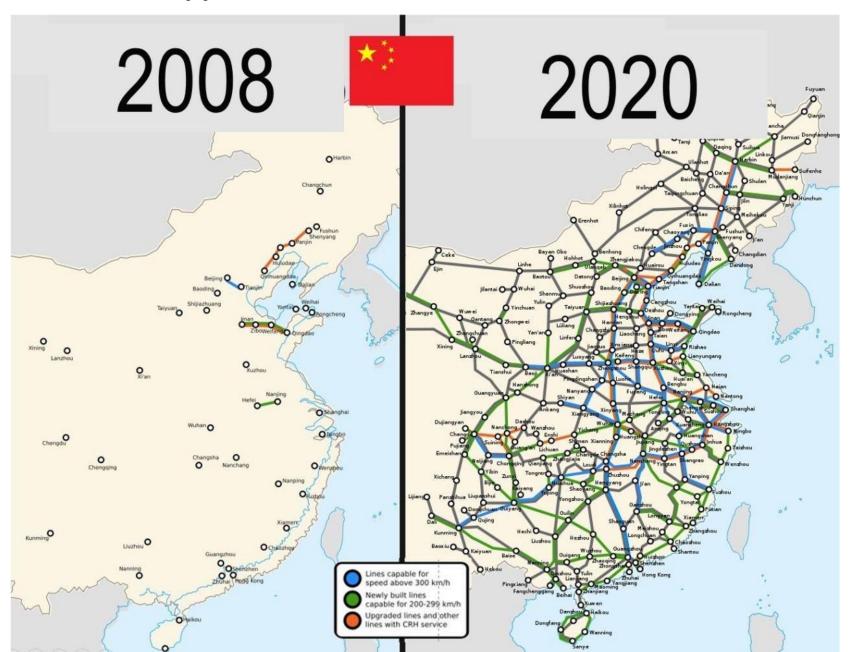
LINE	MAXIMUM SPEE	D (km/h)	YEAR	DISTANCE (KIL	OMETRES)
Takeo Onsen - Nagasaki (Nishi Kyushu)	260		2022	66	
Kanazawa - Tsuruga (Hokuriku)	-		2023	125	
Shin Hakodate - Sapporo (Hokkaido)	-		2031	211	
				Total km	= 402

High-speed lines planned in Japan

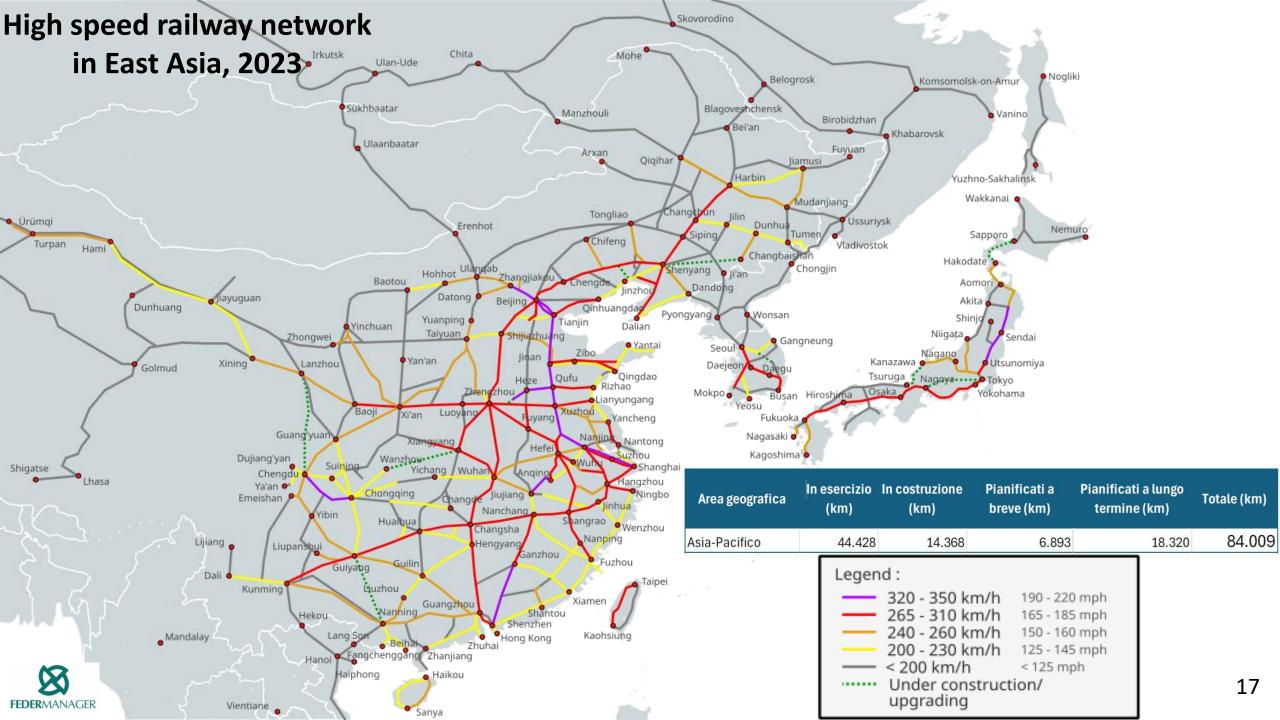
LINE	MAXIMUM SPEED (km/h)	YEAR	DISTANCE (KILOMETRES)
Tsuruga - Shin Osaka (Hokuriku)	-	2046	143
Shin Tosu - Takeo Onsen (Nishi Kyushu)	-	-	51
			Total km = 194

Fonte: Dati UIC 2022 - ATLAS High-Speed Rail

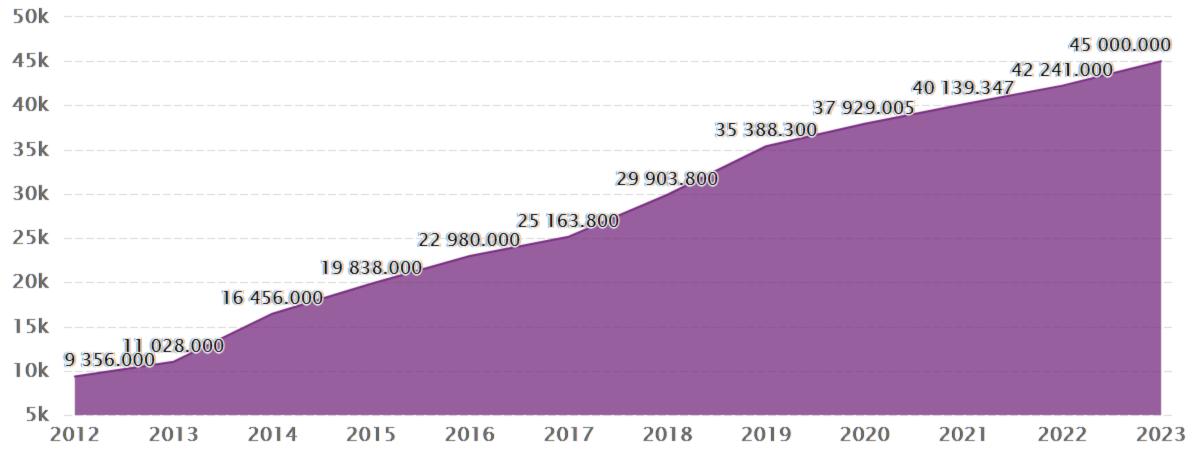
JR-Maglev


Giappone

Il Giappone ha testato nella prefettura di Yamanashi un treno Maglev, il JR-Maglev, che ha raggiunto la velocità record di 603 km/h, la maggior velocità mai raggiunta da un convoglio terrestre. Il treno utilizza magneti superconduttori e sospensioni elettrodinamiche repulsive (al contrario, il Transrapid utilizza convenzionali elettromagneti e sospensioni elettromagnetiche di tipo attrattivo). Il "Superconducting Maglev Shinkansen" sviluppato dalla Central Japan Railway Co. e Kawasaki Heavy Industries è attualmente il treno più veloce del mondo e si pensa di impiegarlo in futuro sulla tratta fra Tokyo e Osaka.


Nel marzo 2005 è stata aperta al pubblico la linea Linimo a Nagoya, lunga 8,9 km e comprendente nove stazioni. La linea era parte delle attrazioni per l'Expo 2005 svoltosi a Nagoya, ed è poi rimasta in attività anche dopo la conclusione dell'evento. La linea ha un raggio operativo minimo di 75 metri e un'inclinazione di 6%. Il motore lineare a levitazione magnetica ha una velocità massima di 100 km/h e copre la tratta in 17 minuti, soste incluse.

Mappa delle ferrovie ad alta velocità cinesi


La rete ferroviaria ad alta velocità (HSR) della Repubblica Popolare Cinese (RPC) è la più lunga e utilizzata al mondo, con una lunghezza totale di 46.000 chilometri a metà del 2024.

La rete HSR comprende linee ferroviarie di nuova costruzione con una velocità di progetto di 200-380 km/h.

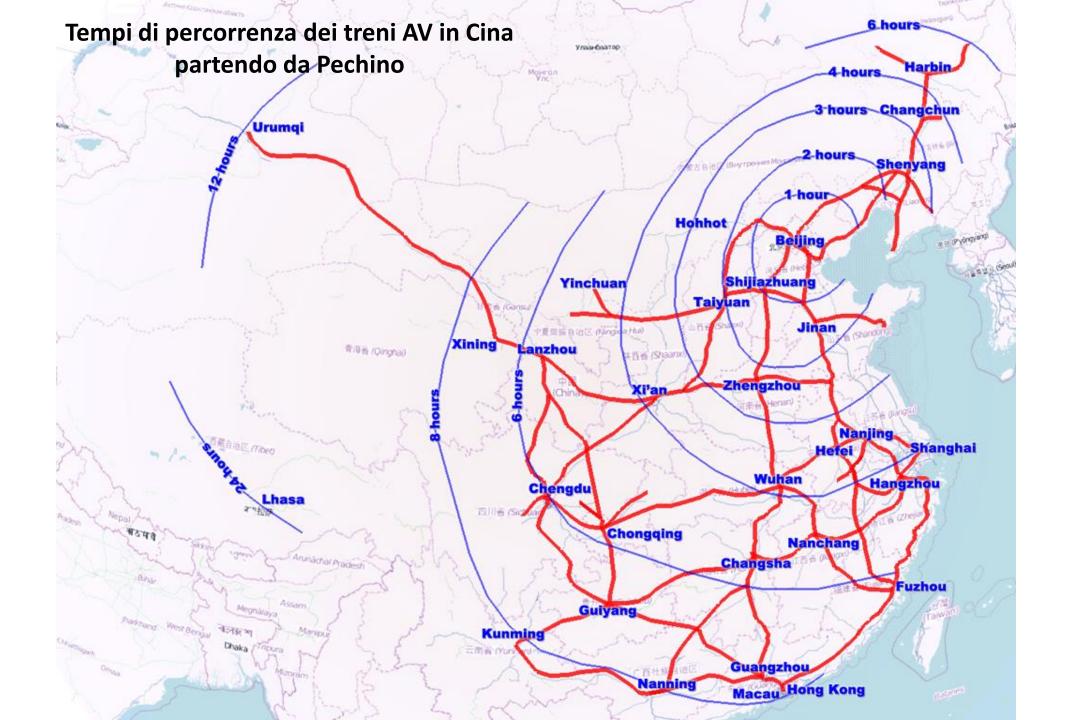
L'alta velocità cinese rappresenta i due terzi del totale delle reti ferroviarie ad alta velocità del mondo. Quasi tutti i treni, i binari e i servizi ad alta velocità sono di proprietà e gestiti dalla China Railway Corporation con il marchio China Railway High-speed (CRH).

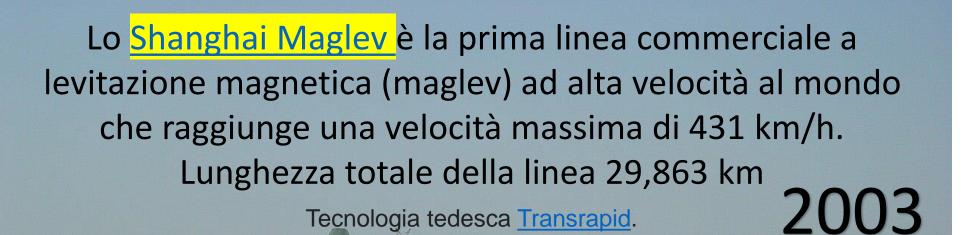
La ferrovia ad alta velocità si è sviluppata rapidamente in Cina a partire dal 2003.

Ferrovie ad alta velocità in Cina dal 2008 al 2023

SOURCE: WWW.CEICDATA.COM | China Railway Corporation, National Railway Administration

Linee ferroviarie ad Alta velocità in Cina


Line HSR China	Termini	Length (km)	Туре	Maximum speed	Opening	Status
Shanghai maglev train	Longyang Road-Pudong International	31	New	431 km/h	2004	Operational
Beijing-Shanghai	Beijing south-Tianjin West / Shanghai Hongqiao	1.318	New	350 km/h	2011	Operational
Beijing-Guangzhou	Beijing west-Guangzhou	2.230	New	350 km/h	2012	Operational
Hangzhou–Fuzhou–Shenzhen	Hangzhou east–Shenzhen north	1.495	New	350 km/h	2013	Operational
Huhanrong PDL	Shanghai Hongqiao–Chengdu	2.078	New	350 km/h	2014	Operational
Shanghai-Kunming	Shanghai Hongqiao–Kunming south	2.066	New	350 km/h	2016	Operational
Guangzhou–Kunming	Guangzhou south–Kunming south	1.285	New	350 km/h	2016	Operational
Suifenhe–Manzhouli	Suifenhe–Manzhouli	714	Upgraded	250 km/h	2018	Operational
Qingdao–Yinchuan	Qingdao north—Yinchuan	1.762	Upgraded	350 km/h	2018	Operational
Beijing–Lanzhou	Beijing-Lanzhou	1.526	Upgraded	350 km/h	2019	Operational
Beijing-Harbin ^[af]	Beijing Chaoyang-Harbin / Dalian	1.700	New	350 km/h	2021	Operational
Eurasia Continental Bridge	Lianyungang-Ürümqi	3.422	New	350 km/h	2021	Operational
Coastal corridor (north extension)	Dandong-Ningbo	2.659	New	350 km/h	2027	Mostly operational
Coastal corridor (south extension)	Huizhou south–Dongxing	954	New	350 km/h	2028	Mostly operational
Hohhot–Nanning	Hohhot–Nanning	2.779	New	350 km/h	2028	Mostly operational
Baotou (Yinchuan)-Hainan	Baotou-Sanya / Xi'an north	4.664	New	350 km/h	2028	Mostly operational
Lanzhou (Xining)-Guangzhou	Lanzhou west–Guangzhou	2.282	New	350 km/h	2028	Mostly operational
Beijing-Hong Kong (Taipei)	Beijing Fengtai-Hong Kong West Kawloon / Taipei ^[an]	4.392	New	350 km/h	2029	Mostly operational
Shanghai-Chongqing-Chengdu	Shanghai Baoshan—Chengdu	5.130	New	350 km/h	2029	Partly operational
Beijing-Kunming	Beijing-Kunming / Chongqing	3.796	New	350 km/h	2030	Mostly operational
Xiamen–Chongqing	Xiamen–Chongqing	937	New	350 km/h	TBD	Partly operational
Regional railways	Multiple lines	1.611	New	350 km/h	2008-2020	Operational
Intercity railways	Multiple lines	7.210	New	250 km/h	2008–2020	Operational
Class I railways	Multiple lines	5.057	Upgraded	200 km/h	2012–2019	Operational
		61.097				


Fonte: https://en.wikipedia.org/wiki/List of high-speed railway lines

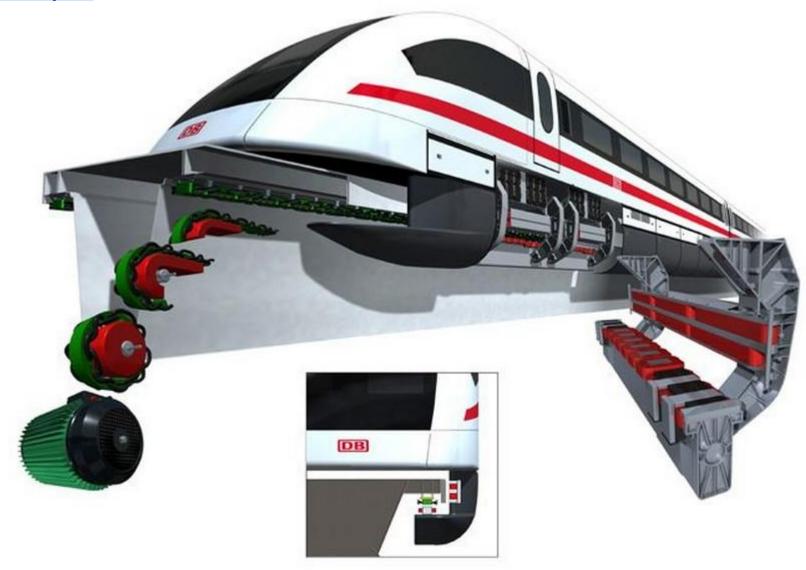
Il sistema Transrapid è stato sviluppato in Germania dove sono stati testati 9 prototipi tra il 1969 e il 2007 nel circuito di prova a Emsland.

Nel 1988 furono elaborati piani completi per la costruzione di tracciati a levitazione magnetica in tutta la Germania, a partire dalla tratta Amburgo – Hannover.

L'incidente del 22 settembre
2006, di un treno Transrapid
che si è schiantato contro un
veicolo di manutenzione,
uccidendo 23 persone segnò la
fine per il Transrapid in Europa

La linea ferroviaria collega dal 10 ottobre 2003 l'aeroporto internazionale di Shanghai Pudong e la stazione di Longyang Road (alla periferia del centro di Pudong, con trasferimenti sulle linee 2, 7, 16 e 18), dove i passeggeri possono scambiarsi con la metropolitana di Shanghai per continuare il loro viaggio verso il centro della città.

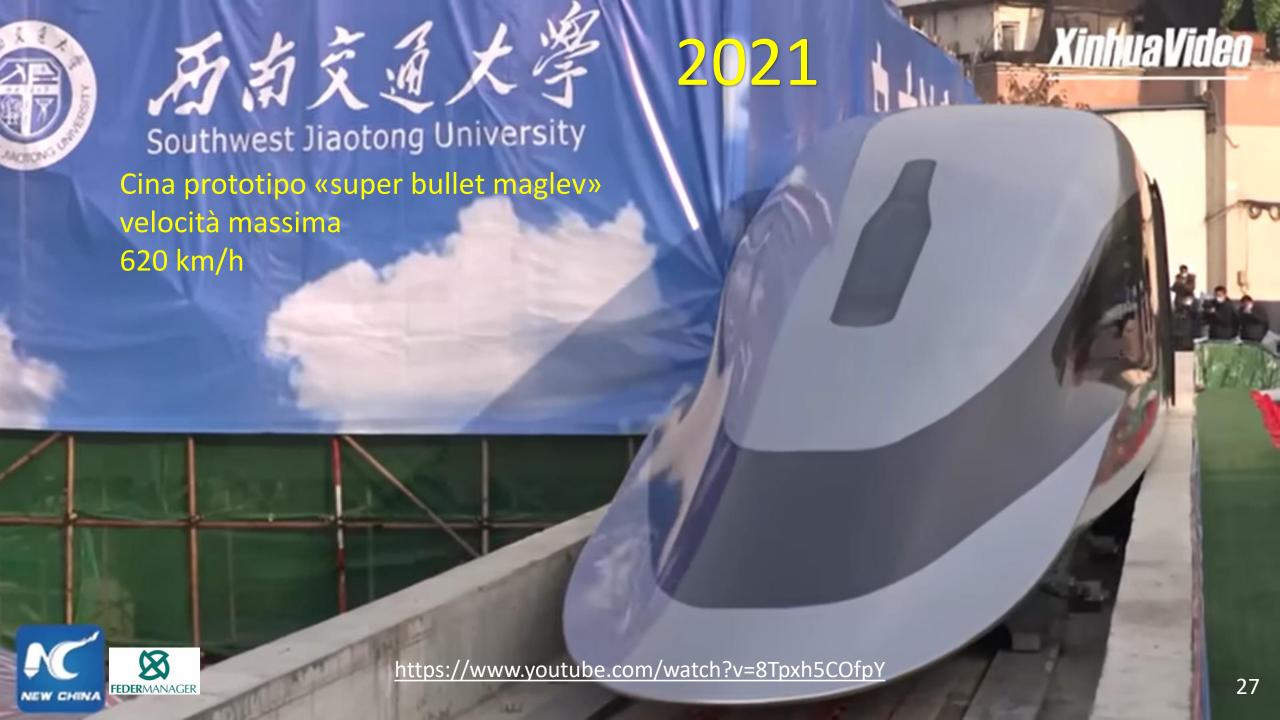
velocità massima di 501 km/h


https://en.wikipedia.org/wiki/Shanghai maglev train

FEDERMANAGE

<u>L'incidente del 22 settembre 2006, di un treno Transrapid</u> che si è schiantato contro un veicolo di manutenzione, uccidendo 23 persone segnò la fine per il Transrapid in Europa

Maglev espresso di Changsha


Il Maglev espresso di Changsha è un treno a levitazione magnetica che collega l'Aeroporto di Changsha-Huanghua con la stazione ferroviaria e metropolitana di Changsha Sud. È la seconda linea maglev della Cina ad essere costruita e la prima ad essere realizzata con tecnologia locale.

Cina

Il 31 dicembre 2000 il primo superconduttore ad alte temperature per Maglev è stato testato con successo nella Southwest Jiaotong University di Chengdu, in Cina. Il sistema si basa su superconduttori ad alta temperatura che vengono fatti levitare su magneti permanenti. Il carico era di 530 chilogrammi e la distanza dai magneti era di 20 millimetri. Il sistema utilizzava azoto liquido, un refrigerante molto economico per i superconduttori.

Il 6 maggio **2016** è entrato in servizio il Maglev espresso di Changsha, la prima linea Maglev costruita con tecnologia cinese.

2024

La rivoluzione cinese a levitazione magnetica sta arrivando...

La Cina sta valutando la possibilità di utilizzare il maglev per collegare le principali città, anche se il costo potrebbe rendere il progetto non realizzabile.

Il maglev Shanghai-Hangzhou è in fase di studio.

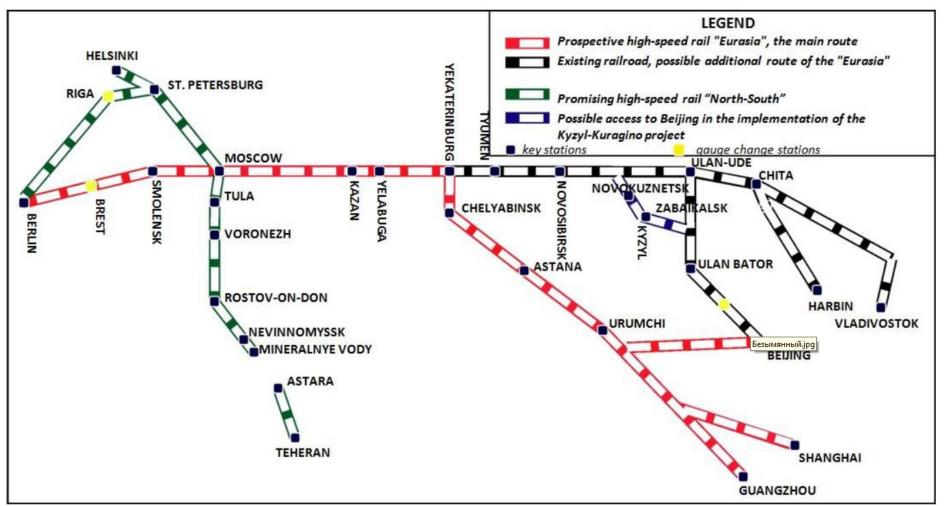
https://it.wikipedia.org/wiki/Treno_a_levitazione_magnetica

Elenco delle proposte di treni a levitazione magnetica nel mondo

Asia: Cina, India, Giappone, Malaysia, Filippine, Hong Kong

Europa: Germania, Svizzera, Spagna, Regno Unito

Nord America: Portorico, Stati Uniti



Il progetto HSR Eurasia

Memorandum of Understanding firmato tra Cina e Russia il 13 ottobre 2014

Nel 2014, per dimostrare che la Russia non era isolata nonostante le sanzioni occidentali imposte a seguito dell'annessione della Crimea, il presidente della Federazione Russa Vladimir Putin autorizzò l'avvio del Progetto HSR EURASIA, come potenziamento del corridoio 2 Euro-Asian Transport Links (EATL) individuato dall'UNECE e dall'UNESCAP.

Il corridoio da adeguare per treni ad alta velocità avrebbe dovuto essere quello indicato in rosso, che va dalla Cina (Pechino, Shangai, Guanzhou, Urumchi), attraversa il Kazakistan (Astanà), la Federazione Russa, la Bielorussia (Brest), la Polonia e la Germania sino a Berlino.

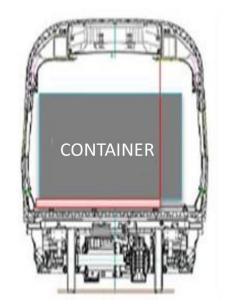
Confronto tempi di viaggio	Moscow		Kazan		Yekaterinburg		Chelyabinsk		Astana		Urumchi		Beijing	Totale
Distanza (km)		762		767		271		1.057		1.734		3.170		7.761
Tempo di viaggio (ore)		14,25		13,9		4,3		19,2		31,5		49		132,15
Tempo di viaggio via HSR (ore)		3,3		3,5		1,7		6,6		6,2		11,3		32,6

Confronto dei tempi di viaggio tra la linea ferroviaria attuale e quella HSR EURASIA

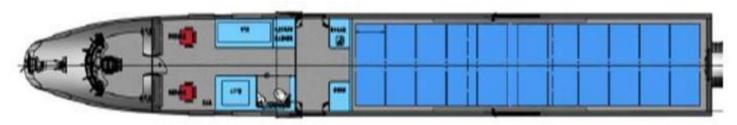
La lunghezza totale della linea è stata stimata in circa 9.500 km (6.700 km di linee di nuova costruzione), di cui 2.300 km nel territorio della Federazione Russa. Di conseguenza con la realizzatone di questo progetto verrebbe creata la più grande rete HSR del mondo lunga oltre 50.000 km collegando i sistemi di trasporto dell'Asia, della Federazione Russa e dell'Unione Europea.

La spesa totale per il progetto, stimata nel 2017, era di 7,08 trilioni di rubli per la sezione Brest - Dostyk (7,84 trilioni di rubli, considerando anche la tratta cinese), di cui 3,58 trilioni di rubli per la costruzione sul territorio della Federazione Russa. La prima tratta da realizzare sarebbe la Mosca-Kazan per un costo stimato di 2,2 trilioni di rubli.

Ipotesi di treno per servizio passeggeri e trasporto merci ad alta velocità


Per tale progetto sono stati proposti due tipi di materiale rotabile: per servizi passeggeri con velocità fino a 350 km/h e per il trasporto merci con velocità comprese tra 250 e 300 km/h.

Il progetto è stato presentato all'EXPO InnoTrans Berlin 2016


China's Concept Intercontinental High-Speed Train
YouTube https://www.youtube.com/watch?v=rpPOybyR6gU

Treno per servizio trasporto merci ad alta velocità

China - Cerimonia di presentazione del treno merci HSR https://www.youtube.com/watch?v=gVS4eWqXLOc

Il materiale rotabile merci da operare sui corridoi HSR Eurasia avrebbe dovuto essere progettato e costruito appositamente sulla base di soluzioni tecniche utilizzate per treni passeggeri ad alta velocità con interni adattati al trasporto di speciali container.

I nuovi treni merci AV costruiti dai cinesi vengono regolarmente utilizzati in Cina per il trasporto veloce delle merci di piccole dimensioni (e-commerce)

Treno per servizio trasporto merci ad alta velocità

Treno merci ad alta velocità produtto dalla China Railway Rolling Stock Corporation (CRRC)

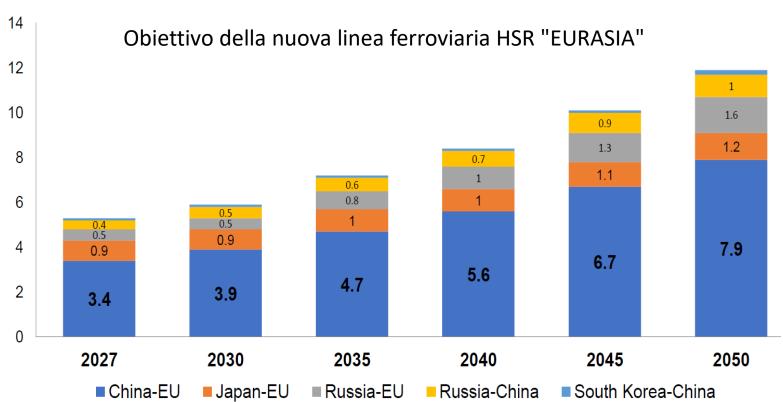
Treni per il trasporto merci per il servizio ad alta velocità in Cina

Treni cargo cinesi ad alta velocità (350 km/h) Il 23 dicembre 2020, il treno cargo ad alta velocità da 350 km/h sviluppato con successo dalla Cina è uscito ufficialmente dalla catena di montaggio presso CRRC Tangshan Locomotive and Rolling Stock Co., Ltd. Per la prima volta al mondo, è stato realizzato il trasporto ferroviario ad alta velocità con una velocità di 350 chilometri all'ora, che ha migliorato significativamente il livello di innovazione dei servizi ferroviari cinesi. Il test nella galleria del vento ha dimostra che la forma della testa del treno è dinamica e bella allo stesso tempo, la resistenza di avanzamento del treno è notevolmente ridotta e il consumo di energia per unità di peso del carico è solo l'8% del mezzo. Il gruppo di treni cargo ad alta velocità sono stati colorati di argento, bianco e rosso, hanno una coppia di porte di carico larghe 2,9 metri su ogni lato di ciascuna carrozza che è l'apertura più grande del mondo, che è la caratteristica estetica più significativa del gruppo di treni cargo AV cinesi che li distingue dai treni AV passeggeri. L'interno delle carrozze cargo AV non ha finestrini, né sedili e il pavimento è dotato di attrezzature standard per container. Questo treno per il trasporto merci ad alta velocità ha anche un cervello molto "intelligente". "Tecnologie come l'analisi dei big data, lo stivaggio virtuale nel cloud, il controllo preciso del peso e l'algoritmo genetico possono essere utilizzate per realizzare il caricamento intelligente delle merci e l'allocazione ragionevole dei carichi dei veicoli". Tongjin adotta la tecnologia di comunicazione a impulsi senza portante (UWB), la rete dati mobile e la tecnologia di navigazione satellitare Beidou per realizzare l'identificazione accurata, il posizionamento preciso delle merci e l'interazione veicolo-terra delle informazioni sul carico. "Adattarsi alla temperatura ambiente da -25 °C a 40 °C, la configurazione di potenza è 4 in carrozze motrici, 4 carrozze trainate per un totale di per ogni treno cargo AV, il carico non è inferiore a 110 tonnellate, il volume di carico non è inferiore a 800 metri cubi e il tasso di utilizzo dello spazio di carico è del ≥85%". La cosa più importante per la sicurezza del carico è la prevenzione degli incendi. Questo gruppo di treni cargo AV è dotato di un sistema di allarme antincendio intelligente, che applica una varietà di nuovi materiali e tecnologie ignifughi, l'area del magazzino adotta un nuovo rivestimento ignifugo intumescente, della durata di oltre 10 anni.

FEDERMANAGER

Treni per il trasporto merci per il servizio ad alta velocità in Cina

Il treni cargo per il trasporto merci ad alta velocità da 350 km/h fanno parte del piano chiave di ricerca e sviluppo del Ministero della Scienza e della Tecnologia della Repubblica Popolare Cinese "Advanced Rail Transit", guidato dalla società CRRC Tangshan, e ha svolto congiuntamente ricerche da unità vantaggiose nazionali, dopo oltre 3 anni di duro lavoro. Ha brevettato una serie di tecnologie chiave per il rapido sviluppo del trasporto veloce delle merci, come il sistema di cuscinetti, il sistema di viaggio, le attrezzature intelligenti di carico e scarico e il carico e lo scarico rapidi, e ha aperto la strada a una gamma completa di attrezzature di carico e scarico come porte di carico a grande apertura per treni merci ad alta velocità, nuovi container standard e piani merci modulari, che hanno migliorato significativamente l'efficienza delle operazioni di carico e scarico e hanno realizzato carichi di grandi dimensioni, grandi volumi, carico e scarico rapidi e gestione in transito delle merci. Si stima che rispetto all'aviazione e al trasporto su strada, il gruppo di treni AV cargo sia meno influenzato dai fattori ambientali e la distanza di 1.500 chilometri possa essere raggiunta entro 5 ore, il che ha le caratteristiche di economia e velocità, intelligenza ed efficienza, sicurezza e protezione ambientale. Gli addetti ai lavori del settore hanno affermato che negli ultimi anni, con il rapido sviluppo del settore dell'e-commerce, anche la domanda di logistica e trasporto è cresciuta in modo esplosivo. Nello sviluppo e nello sviluppo di treni per il trasporto merci ad alta velocità e dei relativi sistemi, la Cina ha stabilito per la prima volta standard e regole di trasporto multimodale, ha costruito un'interfaccia di connessione in una varietà di scenari di carico e scarico e ha costruito una piattaforma integrata per l'intero ciclo di vita della progettazione, produzione, funzionamento e manutenzione dei treni merci ferroviari ad alta velocità, che è diventata un caso dimostrativo di produzione intelligente di treni ad alta velocità.



Servizi di trasporto merci ad Alta Velocità

Country	Continent	Service	Туре	Top speed (km/h)	Introduced	Status
Japan	Asia	JR freight service	Light freight	320	<u>2019</u>	Operational
Germany	Europe	IC: Kurier	Courrier	300	<u>2020</u>	Operational
China	Asia	Freight Express	Dedicated freight train	350	2020	Operational on busy routes
France	Europe	SNCF TGV La Poste	Dedicated freight train	270	1984	<u>Defunct in 2015</u>
Italy	Europe	Mercitalia Fast	Dedicated freight train	300	2018	Defunct in 2022

Trasporto merci Europa Asia attraverso il corridoio nord che passa per la Russia	Domanda, mln tonnellate	Capacità mln tonnellate
2020 dall'infrastruttura esistente (sulla base di interviste agli spedizionieri)	2,4	< 1,4
2035 dalla nuova linea HSR merci-passeggeri (modellazione)	5 - 6	> 10

L'obiettivo principale del progetto è quello di aumentare la capacità di trasporto delle merci lungo il principale corridoio euroasiatico al punto da superare i 10 mln tons/anno entro il 2050 (Tabella); l'urgenza era dovuta alla stimata prossima saturazione dell'infrastruttura. Un altro obiettivo importantissimo era quello di favorire la crescita economica delle aree attraversate, così come teorizzato dal mega progetto russo Trans-Eurasian Razvitie Belt presentato a Mosca l'11 marzo 2014, durante la riunione del Presidio dell'Accademia Russa delle Scienze.

Il progetto HSR Eurasia

In **Kazakistan**, la nuova ferrovia dovrebbe essere realizzata da Khorgos in Cina, Almaty, Balkhash, Karaganda, Nur-Sultan/Astana, Petropavlovsk sino a Chelyabinsk nella Federazione Russa. Il progetto prevede la costruzione di una nuova linea a 250 km/h tra le due più grandi città del paese: Nur-Sultan/Astana e Almaty. Il progetto è attualmente sospeso a causa dell'elevato costo.

In **Russia**, i lavori della nuova ferrovia HSR della tratta Mosca–Kazan avrebbero dovuto essere eseguiti tra il 2018 e il 2023; le altre tratte avrebbero dovuto essere realizzate tra il 2020 e il 2026. La JSC High-Speed Rail Lines , che è la società associata delle ferrovie russe incaricata della realizzazione dello sviluppo di progetti di linee ferroviarie ad alta velocità in Russia, ha iniziato le proprie attività nel 2016. Sino ad oggi la JSC ha avuto solo funzioni di ufficio di progettazione per la nuova ferrovia HSR Mosca – Kazan.


Il ritardo del programma di realizzazione della HSR EURASIA dipende anche dal deterioramento delle relazioni russe con l'Occidente, a seguito dell'annessione della Crimea e dell'avvio degli scontri con l'Ucraina in Donbass, e dalle successive sanzioni occidentali.

Nel 2017, la Bielorussia ha iniziato a discutere con la China Rail Construction Corporation (CRCC) sulla possibile costruzione di un collegamento ferroviario ad alta velocità attraverso il suo territorio (Brest, Baranovichi, Minsk, Barysav, Oesha, Smolensk in Russia). Da allora le linee sono in fase di studio, ma non sono stati compiuti ulteriori progressi.

Il perdurare e l'aggravarsi della crisi dovuta all'invasione dell'Ucraina da parte della Federazione Russa ha impedito sino ad oggi la realizzazione del Progetto HSR EURASIA.

High-speed lines in Russia

High-speed lines under construction in Russia Ferrovia ad alta velocità Mosca-Kazan - Wikipedia

LINE	Treno <u>Siemens Velaro</u>	MAXIMUM SPEED (km/h)	YEAR	DISTANCE (KILOMETRES)
Moscow	- St. Petersburg	350	20XX	659
		250	2009	Total km = 659

High-speed lines planned in Russia Mosca e Nizhny Novgorod

LINE	Treno Talgo <u>Strizh</u>	MAXIMUM SPEED (km/h)	YEAR	DISTANCE (KILOMETRES)
Moscow - I	Nizhni Novgorod	350	20 <mark>XX</mark>	421
		200	2015	Total km = 421

Treno <u>Siemens Velaro</u> RUS sulla rotta <u>Mosca - San Pietroburgo (max 250 km/h)</u> Chiamato anche <u>Sapsan</u> = 'Falco pellegrino'

Source: compiled by authors based on International Union of Railways, 2021

FEDERMANAGER

Fonte: Dati UIC **2022** – <u>ATLAS High-Speed Rail</u>

La lunghezza totale della ferrovia alta velocità Mosca-San Pietroburgo sarà di 679 km.

Il tempo di percorrenza sarà di 2 ore e 15 minuti senza fermate.

Il progetto per la costruzione della ferrovia ad alta velocità Mosca-San Pietroburgo è la base per l'ulteriore sviluppo degli agglomerati e la loro fusione attraverso le comunicazioni di trasporto ad alta velocità.

La creazione di una ferrovia ad alta velocità garantirà la formazione di cluster industriali nell'area dell'HSR in tutte le sfere della società: lo sviluppo di strutture commerciali, residenziali, turistiche, educative, mediche, ricreative e sportive.

Contribuirà alla ristrutturazione del complesso dei trasporti delle città e delle regioni, alla creazione di un nuovo look.

FEDERMANAGER

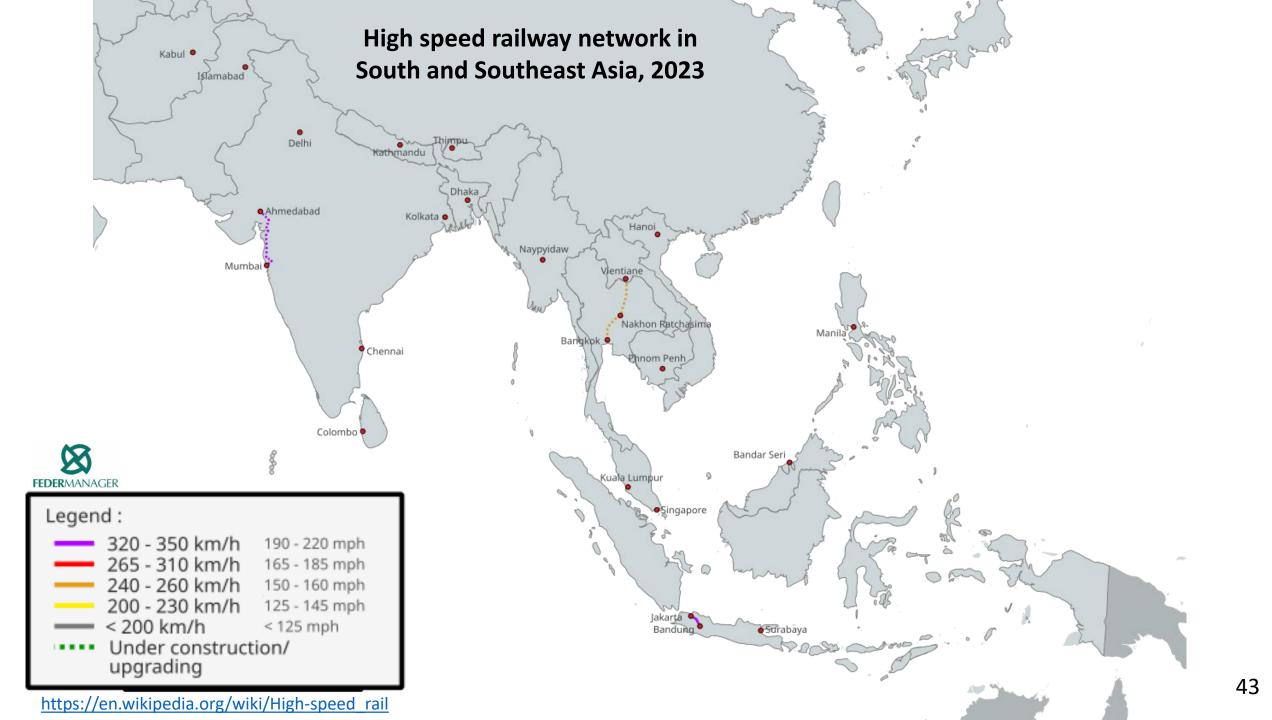
HSR Mosca — San Pietroburgo

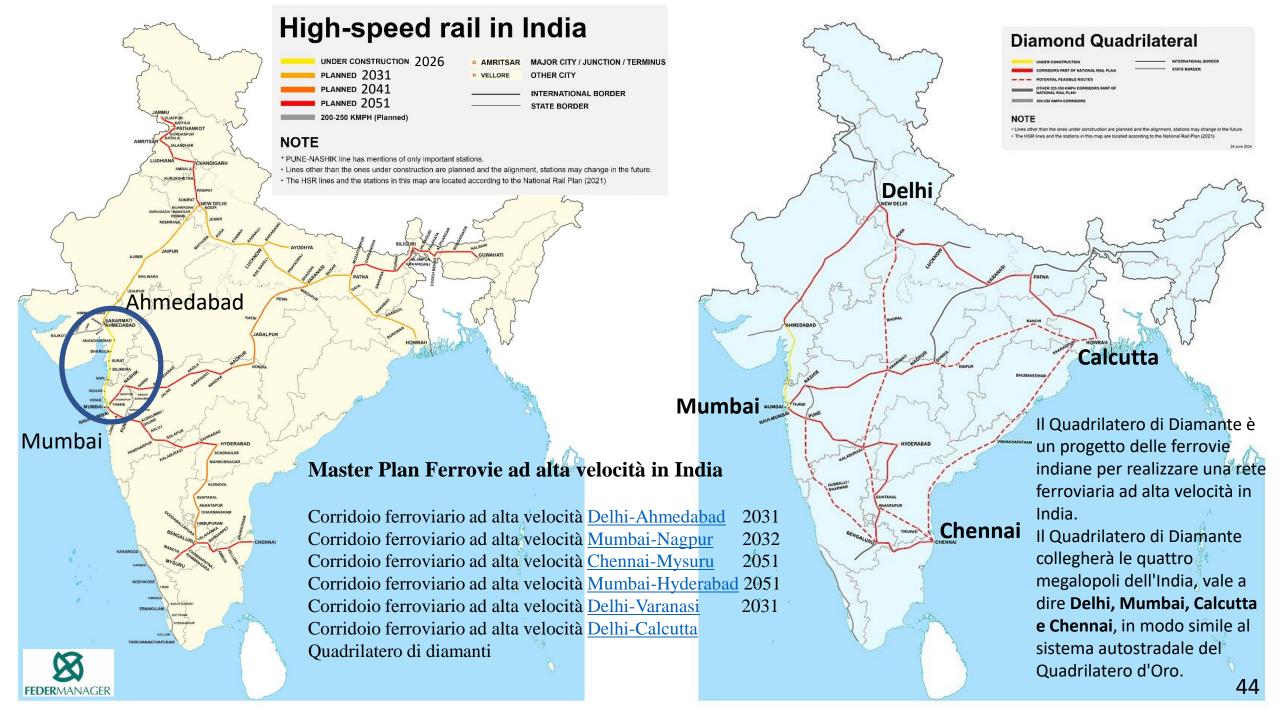
La costruzione della ferrovia ad alta velocità Mosca-San Pietroburgo è prevista dalla Strategia dei trasporti della Federazione Russa fino al 2030 con una previsione per il periodo fino al **2035**. Il percorso è incluso nel piano di pianificazione territoriale della Federazione Russa. Il Ministero delle Costruzioni, dell'Edilizia e dei Servizi di Pubblica Utilità della Federazione Russa ha concordato specifiche tecniche speciali per la progettazione della HSR Mosca-San Pietroburgo. L'area prioritaria per la realizzazione del progetto di realizzazione di linee ad alta velocità e ad alta velocità in Russia. è la tratta tra Mosca e San Pietroburgo, tenendo conto della valutazione della domanda esistente, della presenza di un traffico passeggeri stabile, delle previsioni macroeconomiche e demografiche.

Più di 30 milioni di persone vivono nella zona di influenza della HSR Mosca-San Pietroburgo, che rappresenta il 20% della popolazione del paese.

L'HSR Mosca-San Pietroburgo attraverserà il territorio di 6 entità costitutive della Federazione Russa: le città federali di Mosca e San Pietroburgo, le regioni di Leningrado, Novgorod, Tver e Mosca.

МОСКОВСКАЯ ОБЛАСТЬ МОСКВА МОСКОВСКАЯ ОБЛАСТЬ ОБЛАСТЬ




http://www.hsrail.ru/Projects-vsm/vsmmk/

HSR Mosca — Kazan'

Al fine di migliorare la disponibilità e la qualità del trasporto passeggeri, nonché di migliorare i servizi di trasporto e logistica nel campo del trasporto merci, uno dei compiti strategici sistemici del complesso dei trasporti russi è quello di creare traffico ad alta velocità e ad alta velocità, che aumenterà l'accessibilità dei trasporti, garantirà la connettività territoriale delle regioni e aumenterà la mobilità, l'attività sociale e commerciale della popolazione.

L'infrastruttura di trasporto dedicata dell'AVR libererà capacità infrastrutturali per il traffico merci, consentirà un trasporto merci più efficiente e consentirà di aumentare la velocità dei treni container per il trasporto di merci ad alto valore aggiunto e sensibili ai tempi di consegna. L'HSR Mosca-Kazan attraverserà il territorio di 7 entità costitutive della Federazione Russa: Mosca e la regione di Mosca, le regioni di Vladimir e Nizhny Novgorod, la Repubblica di Ciuvascio, la Repubblica di Mari El e la Repubblica del Tatarstan. La HSR collegherà le capitali delle regioni con un'unica autostrada della lunghezza di 790 km (compreso lo scalo a Nizhny Novgorod) con fermate in 16 insediamenti di diverse dimensioni. La velocità operativa dei treni sulla rotta sarà fino a 360 km/h. La ferrovia ad alta velocità Mosca-Kazan attraverserà il territorio di 7 entità costitutive della Federazione Russa: Mosca e la regione di Mosca, le regioni di Vladimir e Nizhny Novgorod, la Repubblica di Ciuvascia, la Repubblica di Mari El e la Repubblica del Tatarstan. La R.HSR collegherà i capoluoghi delle regioni con un'unica autostrada lunga 790 km con fermate in 16 insediamenti di diverse dimensioni. La velocità di esercizio dei treni sulla tratta sarà fino a 360 km/h. 42

नेशनल हाई स्पीड रेल कॉपॉरेशन लिमिटेड NATIONAL HIGH SPEED RAIL CORPORATION LIMITED

उच्च गति - राष्ट्र की उन्नति Incredibly Fast and Reliable

508 kms stretch between Mumbai to Ahmedabad will be covered in 2 hrs 7 mins by Bullet Train with the maximum operational speed of 320 kmph.

मुम्बई से जहमदाबाद के बीच 508 किलोमीटर की दूरी को बुलेट ट्रेन द्वारा 320 किलोमीटर प्रति घंटे की अधिकतम परिचालन रफ्तार से 2 घंटे 7 मिनटों के भीतर तथ कर लिया जाएगा।

Il corridoio ferroviario ad alta velocità che è stato individuato da realizzare per primo è il Mumbai – Ahmedabad, lungo 508 chilometri, che offrirà una connettività veloce tra i due centri finanziari situati negli stati di Maharashtra e Gujarat, nell'India occidentale.

La realizzazione si avvale dell'assistenza giapponese attraverso la **tecnologia Shinkansen** (treno proiettile). La maggior parte della linea HSR è prevista su viadotto per evitare acquisizioni di terreni e la necessità di costruire sottopassaggi.

Dopo essere partito dall'area Bandra Kurla Complex (BKC) di Mumbai, il treno ad alta velocità che viaggerà sino alla **velocità massima di 320 km/h** rivoluzionerà i viaggi interurbani nella regione. Avrà fermate in 10 città intermedie, vale a dire Thane, Virar, Boisar, Vapi, Bilimora, Surat, Bharuch, Vadodara, Anand, Ahmedabad e terminerà a Sabarmati. L'intero viaggio sarà completato in circa 2 ore e 7 minuti con fermate limitate (a Surat, Vadodara e Ahmedabad)

Viadotti	Ponti	Taglia, Taglia	Tratti sotterranei	Gallerie di
		e Copri	metropolitani	montagna
465 km	9,82 km	6.75 km	21 km	5,22 km

High-speed rail in India

Ferrovie AV in INDIA	Anno	In esercizio (km)	In costruzion e (km)	Pianificati a breve (km)	Pianificati a lungo termine (km)	Totale (km)
Mumbai - Ahmedabad	2026		508			508
Delhi - Varanasi	2031				855	855
Varanasi - Patna	2031				250	250
Patna - Kolkata	2031				530	530
Delhi - Udaipur - Ahme	2031				886	886
Hyderabad - Bangalore	2041				618	618
Nagpur - Varanasi	2041				855	855
Mumbai - Nagpur	2051				789	789
Mumbai - Hyderabad	2051				709	709
Patna - Guwahati	2051				850	850
Delhi - Chandigarh - Aı	2051				485	485
Amritsar - Pathankot -	2051				190	190
Chennai - Bangalore -	2051				462	462
Totale		0	508	0	7,479	7.987

Fonte UIC 2022

Line	Termini	Length	Type	Maximum speed	Opening	Status
Mumbai–Ahmedabad	Mumbai BKC-Sabarmati	508,18 km	New	320 km/h	2028	Under construction

46

Ferrovie AV in Asia-Pacifico	In esercizio (km)	in costruzione (km)	Pianificata (km)	Pianificata a lungo termine (km)	Totale (km)
Cina	40.474	13.063	4.104	7.134	64.775
India		508		7.479	7.987
Indonesia		142	570		712
Tailandia		253	431	1.958	2.642
Vietnam			1.545		1.545
Giappone	3.081	402	194		3.677
Corea del Sud	873		49		922
Australia				1.749	1.749
Totale	44.428	14.368	6.893	18.320	84.009

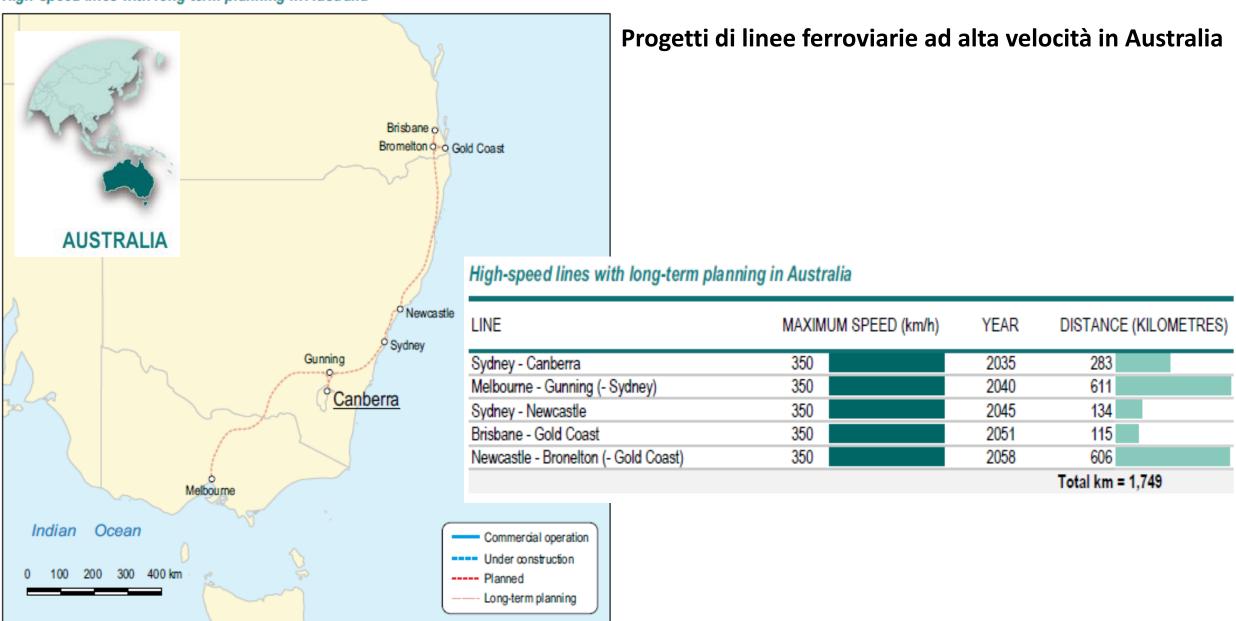
High-speed lines in South Korea

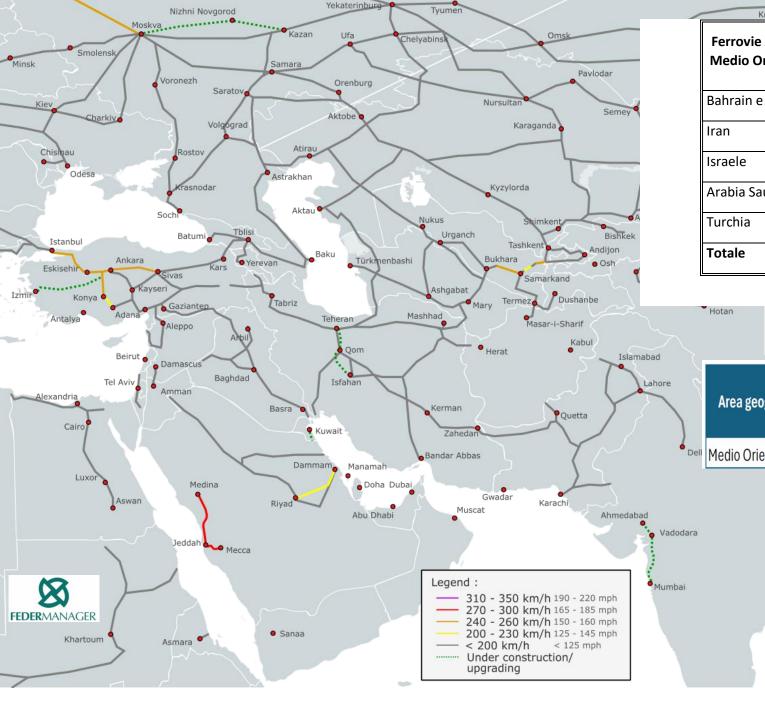
Il servizio ferroviario ad alta velocità in Corea del Sud

High-speed lines in commercial operation in South Korea

LINE	MAXIMUM SPEED (km/h)	YEAR	DISTANCE (KILOMETRES)
Geumcheon-gu (Seoul) - Dongdaegu	305	2004	268
Dongdaegu - Busan	305	2010	131
Osong - Gwangju	305	2015	184
Suseo - Pyoengtaek	305	2016	61
Seoul - Gangneung	250	2017	230
			Total km = 873

High-speed lines planned in South Korea


LINE	MAXIMUM SPEED (km/h)		DISTANCE (KILOMETRES)
Gwangjiu - Mokpo	300	2025	49
			Total km = 49

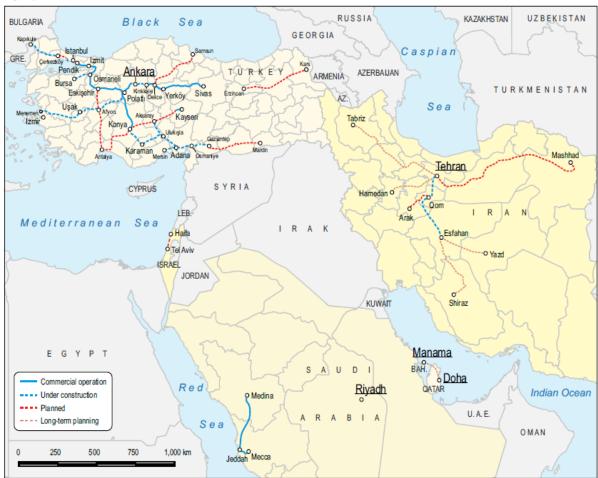

Il servizio ferroviario ad alta velocità in Corea del Sud è iniziato con la costruzione di una linea ad alta velocità da Seoul a Busan nel 1992 ed è stato ispirato dallo Shinkansen giapponese. Il primo servizio ferroviario commerciale ad alta velocità è stato lanciato il 1º aprile 2004. Attualmente, la Corea del Sud ospita due operatori ferroviari ad alta velocità: Korea Train express (KTX) e Super Rapid Train (SRT).

Source: compiled by authors based on International Union of Railways, 2021

Fonte: Dati UIC 2022 - ATLAS High-Speed Rail

High-speed lines with long-term planning in Australia

Ferrovie AV in Medio Oriente	In esercizio (km)	in costruzione (km)	Pianificata (km)	Pianificata a lungo termine (km)	Totale (km)
Bahrain e Qatar				180	180
Iran		410	1.043	1.651	3.104
Israele			85		85
Arabia Saudita	449				449
Turchia	1.052	1.596	2.011		4.659
Totale	1.501	2.006	3.139	1.831	8.477


High speed railway network in Western and Central Asia, 2023

9	Area geografica	In esercizio (km)	In costruzione (km)	Pianificati a breve (km)	Pianificati a lungo termine (km)	Totale (km)
Dell	Medio Oriente	1.501	2.006	3.139	1.83	1 8.477
ra			320 - 350 k 265 - 310 k	m/h 165 - m/h 150 - m/h 125 - < 125 struction/	220 mph 185 mph 160 mph 145 mph 5 mph	
		https://er	n.wikipedia.d	org/wiki/High	n-speed rail	50

8.477

Linee ferroviarie ad Alta Velocità nel Medio Oriente

High-speed lines in Middle East

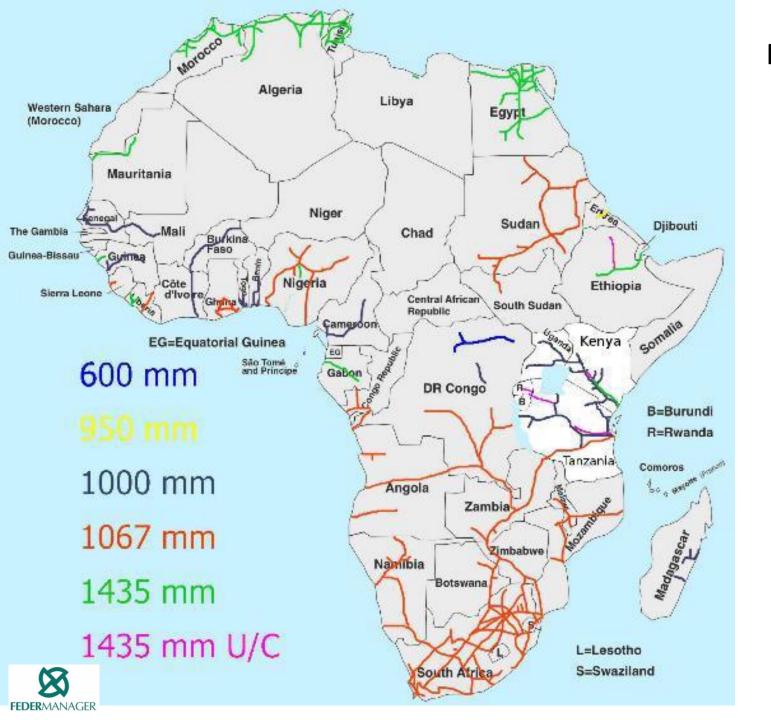
Source: compiled by authors based on International Union of Railways, 2021

High-speed lines in commercial operation in Saudi Arabia

LINE	MAXIMUM SPEED (km/h)	YEAR	DISTANCE (KILOMETRES)
Medina - Jeddah - Mecca	300	2018	449
			Total km = 449

High-speed lines in commercial operation in Turkey

	LINE	MAXIMUM SPEED (km/h)	YEAR	DISTANCE (KILOMETRES)
	Ankara - Eskisehir	250	2009	245
	(Ankara) Polatlı - Konya	250	2011	212
	Eskisehir - İzmit - Pendik (Istanbul)	250	2014	257
	Kayseri North Passage	160	2016	23
	Balışeyh (Kırıkkale) - Sivas	300	2021	315
7				Total km = 1,052


High-speed lines under construction in Turkey

,	LINE	MAXIMUM SPEED (km/h)	YEAR	DISTANCE (KILOMETRES)
	(Ankara) Kayaş - Balışeyh (Kırıkkale)	300	2023	78
7	Bursa - Osmaneli	200	2024	106
(Mersin - Adana - Gaziantep	200	2025	313
4	(Ankara) Polatlı - Menemen (Izmir)	250	2025	508
)	Halkalı - Ispartakule	200	2025	9
	Aksaray - Ulukışla - Yenice	200	2025	192
	Konya - Karaman - Ulukışla	200	-	237
	Çerkezköy - Kapıkule (Bulgarian border)	200	-	153
				Total km = 1,596

High-speed lines planned in Turkey

LINE	MAXIMUM SPEED (km/h)	YEAR	DISTANCE (KILOMETRES)
Ispartakule - Çerkezköy	200	2025	67
Eskişehir - Antalya	200	-	428
Delice (Kırıkkale) - Samsun	200	-	293
Erzincan - Kars	200	-	382
Kayseri - Antalya	200	-	541
Gaziantep - Mardin	200	-	300
			Total km = 2 011

Fonte: Dati UIC **2022** – <u>ATLAS High-Speed Rail</u>

Mappa delle ferrovie africane del 2017 con evidenziati a colori i diversi scartamenti

L'Africa ha attualmente la più bassa densità ferroviaria di tutti i continenti abitati, con 16 paesi africani privi di ferrovie, specialmente nell'Africa centrale

Benghazi Tripoli Alexandria Cair Laayoune Ain Salah Aswan O Bobo-Dioulasso Nouakchott Ouagadougou Tambacounda Khartoum Abéché Bamako Al Fashir N'Djamena Conakry Kano Addis Ababa Juba Bangui /Douala Port O 0 Harcourt Yaounde Y Cotonou Kampala Yamoussoukro Nairob Buiumbura -Pan-African HSR **O**Kigali Brazzaville-Kinshasa Cities Mombasa Pointe-Noire O Kananga Dodoma Dar Es Salaam Accelerated Pilot OMbeya Luanda C Lubumbashi Lobito Pilot Projects Lilongwe Lusaka 2033 Plan O Beira 2043 Plan Windhoek Walvis Bav O Gaborone 1000 mi Q Maputo Johannesburg 1000 km Maseru O

Cape Town O

FEDERMANAGER

Durban/eThekwin

Map of The African Integrated **High Speed Railway Network**

Nel 2013, l'Unione africana (UA) ha approvato l'Agenda 2063, un programma di sviluppo cinquantennale che include la creazione di una zona continentale di libero scambio (African Continental Free Trade Area: AfCFTA

https://en.wikipedia.org/wiki/African Continental Fr ee Trade Area), un passaporto comune africano, la fine dei conflitti armati, un forum economico annuale, sviluppare soluzioni logistiche adattate alle megalopoli africane del XXI secolo, un programma spaziale, un Grande Museo africano, l'istituzione di università elettroniche e una rete ferroviaria ad alta velocità a livello continentale (The African Integrated High Speed Railway Network

https://www.youtube.com/watch?v=rC0wH70o4Is).

https://www.reddit.com/r/TransitDiagrams/comments/16l81w p/african integrated highspeed rail network/?rdt=41505

Casablanca Benghazi Tripoli Alexandria Cair Siddi Bel Abbès Laayoune Ain Salah Aswan O Bobo-Dioulasso Nouakchott Ouagadougou Tambacounda Dakar Khartoum Abéché Bamako Al Fashir N'Djamena Conakry Kano Addis Ababa Juba Monrovia Bangui /Douala Port O 0 San-Pedro Harcourt Yaounde Y Cotonou Mogadishu Kampala Yamoussoukro Nairob Buiumbura -Pan-African HSR **O**Kigali Brazzaville-Kinshasa Cities Mombasa Pointe-Noire O Kananga Dodoma Dar Es Salaam Accelerated Pilot OMbeya Luanda C Lubumbashi Lobito Pilot Projects Lilongwe Lusaka 2033 Plan **Q** Beira 2043 Plan Windhoek Walvis Bav O Gaborone 1000 mi Q Maputo Johannesburg 1000 km Maseru O

Cape Town O

FEDERMANAGER

Durban/eThekwini

Map of The African Integrated High Speed Railway Network

L'UA ha firmato un memorandum d'intesa con la Cina nel 2014 per lo sviluppo di 30-50 anni del sistema ferroviario continentale, che collega tutte le capitali dell'Africa continentale utilizzando la moderna tecnologia ferroviaria. Per facilitare la circolazione dei treni l'UA ha stabilito che la nuova rete dovrà utilizzare lo scartamento standard da 1435 mm. L'obiettivo di una rete ferroviaria ad alta velocità è facilitare il commercio intra-africano e ridurre i costi di spedizione.

La tempistica iniziale per il 2022 prevedeva il completamento del 100% del lavoro preparatorio, ma attualmente solo il 12,3% della rete è stato studiato, in gran parte a causa di vincoli di finanziamento. Non è stato ancora specificato quali linee ferroviarie opereranno a 330 km/h, 250 km/h e 160 km/h. L'UA ha stabilito che la Rete ferroviaria integrata ad alta velocità africana dovrà essere pianificata entro il 2043, come parte della **Vision 2063**.

https://www.reddit.com/r/TransitDiagrams/comments/16l81wp/african_integrated_highspeed_rail_network/?rdt=41505______

Casablanca Benghazi Tripoli Alexandria Agadir o Cairo Siddi Bel Abbès Laayoune Ain Salah Aswan O Bobo-Dioulasso Nouakchott Ouagadougou Tambacounda Dakar Khartoum Asmara Abéché Bamako Al Fashir N'Djamena Djibout Conakry Kano Addis Ababa Juba Monrovia /Douala Bangui Port\ O 0 San-Pedro Harcourt Yaoundé Cotonou Mogadishu Kampala Yamoussoukro Nairob Buiumbura -Pan-African HSR **O**Kigali Brazzaville-Kinshasa Cities Mombasa Pointe-Noire O Dodoma Kananga Dar Es Salaam Accelerated Pilot OMbeya Luanda C Lubumbashi Lobito Pilot Projects Lilongwe O Nacala Lusaka 2033 Plan **Q** Beira 2043 Plan Windhoek Walvis Bav O Gaborone 1000 mi Q Maputo Johannesburg 1000 km Maseru O

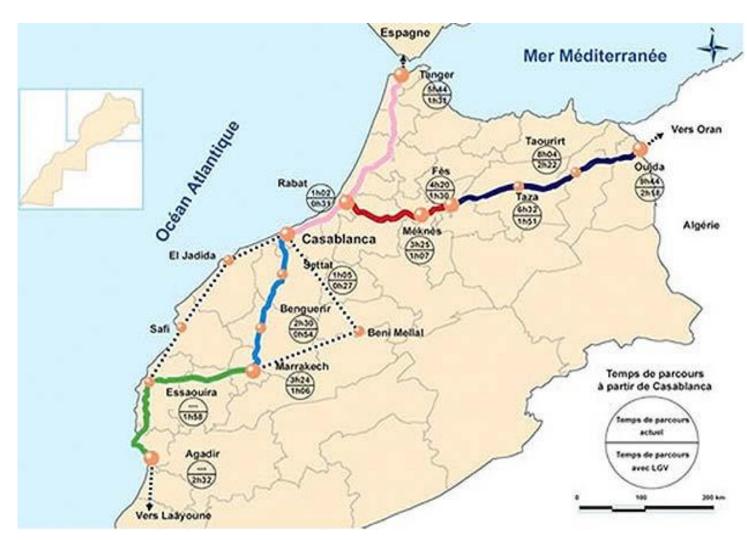
Cape Town O

FEDERMANAGER

Durban/eThekwini

Map of The African Integrated High Speed Railway Network

Ferrovie AV in Africa	In esercizio (km)	in costruzione (km)	Pianificata (km)	Pianificata a lungo termine (km)	Totale (km)
Egitto			1.570	1.805	3.375
Marocco	186		640		826
Sud Africa				2.390	2.390
Totale	186	-	2.210	4.195	6.591


Fonte: Dati UIC **2022** – <u>ATLAS High-Speed Rail</u>

Il **Masterplan 2033** prevede la costruzione in Africa di 35.828 km di nuove linee ferroviarie. Entro il 2033 dovrebbero essere collegati ai porti marittimi sedici paesi senza sbocco sul mare, realizzate interconnessioni tra diverse regioni e completati alcuni corridoi trans africani.

Il **Master Plan 2043** amplierà questa rete per collegare tramite la nuova rete ferroviaria tutte le capitali politiche ed economiche dell'Africa

https://www.reddit.com/r/TransitDiagrams/comments/16l81wp/african_integrated_highspeed_rail_network/?rdt=41505_____

Master plan marocchino relativo alle ferrovie ad Alta Velocità da completare entro il 2040

Il Marocco il 23 ottobre 2007 ha firmato il primo memorandum d'intesa con la Francia per la realizzazione del progetto LGV marocchino finalizzato a dotare il paese entro il 2035 con 1.500 km di linee ferroviarie ad alta velocità. Questo progetto di nuove linee comprende due corridoi ferroviari:

- Corridoio Atlantico: Tangeri-Casablanca (900 km, v max 320 km/h, attivato nel 2018)
 Prolungamento della linea Atlantica da Casablanca fino ad Agadir, passando per Marrakech ed
 Essaouira, entro il 2040;
- **Corridoio Magrebino**: Rabat-Oujda, passando per Meknes e Fes (600 km, vmax 220 km/h, attivazione prevista entro il 2040). Il progetto prevede il successivo collegamento con la rete ferroviaria algerina in modo da raggiungere ad alta velocità Algeri, Tunisi, Tripoli e Bengasi. Tuttavia, le difficili relazioni storiche tra Marocco e Algeria rendono il progetto non immediato.

56

Treno ONCF "Duplex TGV AL BORAQ" in servizio in Marocco

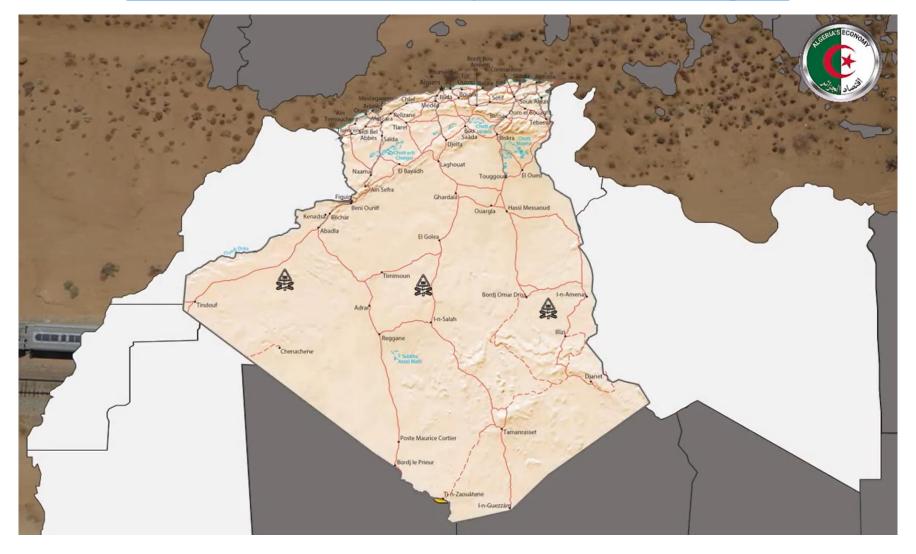
Attualmente circolano in Marocco 14 treni TGV Duplex (Train à Grande Vitesse) per collegare Tangeri, Rabat, Casablanca, Marrakech, Agadir, Fez e Oujda.

Il Marocco ha attivato il 26 novembre 2018 la tratta LGV (Ligne à Grande Vitesse) del corridoio Atlantico da Tangeri a Casablanca (circa 350 km) insieme alle nuove stazioni di Tanger Ville, Kénitra, Rabat Agdal e Casablanca Casa-Voyageurs . La tratta da Tangeri a Kénitra è percorribile alla velocità massima di 320 km/h, mentre la tratta da Kénitra a Casablanca è stata adeguata nel 2020 a 220 km/h.

Re Mohammed VI insieme a Emmanuel Macron, presidente della Repubblica francese, il 15 novembre 2018 a Tangeri, ha inaugurato il treno ad alta velocità TGV "Al Boraq" della linea Alta Velocità Tangeri – Kenitrà, la prima dell'intero continente africano. Un investimento di 23 miliardi di dirham (2 miliardi di euro), finanziato per il 50% dalla Francia, per una linea a doppio binario sulla quale il super treno "Al Boraq" ha già segnato il record continentale di 357 chilometri orari.

High-speed lines in commercial operation in Morocco

LINE	MAXIMUM SPEED (km/h)	YEAR	DISTANCE (KILOMETRES)
Tanger - Kenitra	320	2018	186
			Total km = 186


High-speed lines planned in Morocco

LINE	MAXIMUM SPEED (km/h)	YEAR	DISTANCE (KILOMETRES)
Kenitra - Rabat	320	2027	55
Casablanca - Marrakech	320	2028	240
Rabat - Casablanca	320	2029	105
Marrakech - Agadir	250	-	240
			Total km = 640

Fonte: Dati UIC **2022** – ATLAS High-Speed Rail

Piano di ammodernamento e di ampliamento delle ferrovie algerine

Projet de nouvelle gare centrale ferroviaire d'Alger https://www.youtube.com/watch?v=OuBpgbLlm-s&t=1s

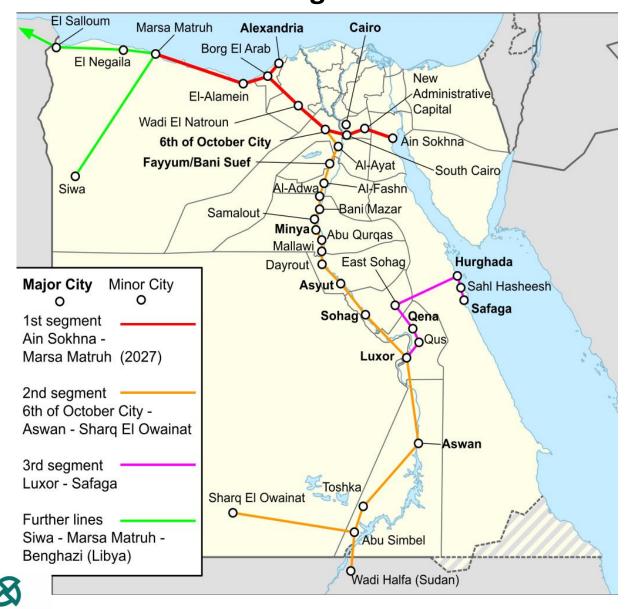
Linee ferroviarie ad alta velocità pianificate in Egitto

FEDERMANAGER

A partire dal 2018 l'Egitto ha iniziato a pianificare la realizzazione di linee ferroviarie ad Alta Velocità. Il 14 gennaio 2021 è stato firmato un memorandum d'intesa tra Siemens Mobility e Egyptian National Authority for Tunnels (NAT), che è un'autorità del governo sotto la giurisdizione del Ministero dei Trasporti egiziano, per progettare, installare e mantenere in esercizio il primo sistema ferroviario ad alta velocità egiziano.

High-speed lines planned in Egypt

LINE	MAXIMUM SPEED (km/h)	YEAR	DISTANCE (KILOMETRES)
Cairo - Alexandria	320	2024	210
Cairo - Aswan	320	2024	700
El Alamein - Ain Sokhna	250	2025	460
El Alamein - Marsa Matrouh	250	2025	200
			Total km = 1,570


High-speed lines with long-term planning in Egypt

LINE	MAXIMUM SPEED (km/h)	YEAR	DISTANCE (KILOMETRES)
Ain Sokhna - Hurghada	250	2030	320
Hurghada - Luxor	250	-	285
6th October City - Luxor	250	-	640
Luxor - Aswan	250	-	210
Safaga - Barnis	250	-	350
			Total km = 1.805

Fonte: Dati UIC 2022 – ATLAS High-Speed Rail

Source: compiled by authors based on International Union of Railways, 2021

Linee ferroviarie ad alta velocità pianificate in Egitto

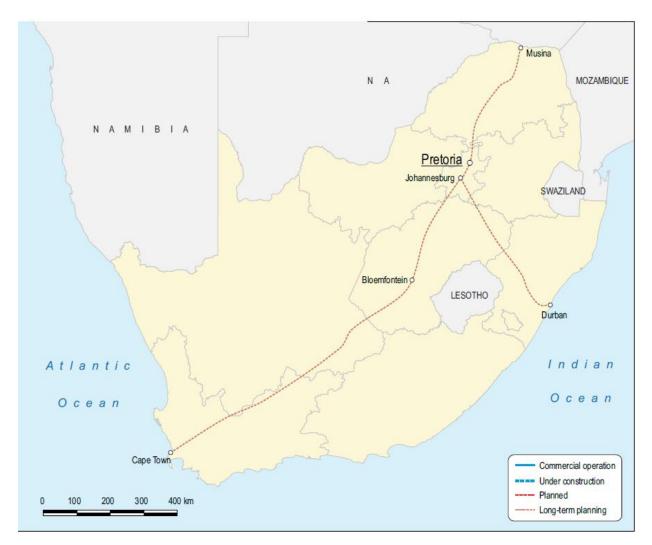
FEDERMANAGER

Il progetto, che verrà realizzato in tre fasi, prevede:

- la realizzazione di circa 2000 km di nuove linee ad alta velocità che collegheranno oltre 60 città in tutto il paese.
- Siemens Mobility fornirà 41 treni AV Velaro da 8 casse, 94 convogli regionali ad alta capacità a quattro carrozze Desiro e 41 locomotive Vectron per treni merci
- Il contratto chiavi in mano include la più recente tecnologia di infrastruttura ferroviaria (ETCS livello 2 e una rete elettrica adeguata), otto depositi e cantieri e un contratto di manutenzione di 15 anni
- Creerà il sesto più grande sistema ferroviario ad alta velocità del mondo
- Per la gestione dell'intero progetto è prevista la creazione di circa 40.000 posti di lavoro
 Si prevede che l'intera rete costerà 23 miliardi di dollari.

Linee ferroviarie ad alta velocità pianificate in Egitto

FEDERMANAGER


La prima linea di tale rete lunga 660 km è in corso di realizzazione da Marsa Matruh sul Mar Mediterraneo, passare attraverso Al-Alamein, Borg El Arab, poi Wadi El Natroun, fino alla 6th of October City, attraverso il Cairo meridionale fino alla nuova capitale amministrativa, per terminare ad Ain Sokhna sul Golfo di Suez del Mar Rosso. I lavori di tale linea dovrebbero essere ultimati nel 2027. Questo segmento verrà realizzato per trasportare fino a 30 milioni di passeggeri all'anno tramite treni AV Siemens Velaro, dimezzando gli attuali tempi di viaggio e riducendo le emissioni di carbonio del 70%.

Una **seconda linea** si estenderà da 6th of October City attraverso Fayoum, Minya, Assuan e Abu Simbel per oltre 1.100 km sulla riva occidentale del Nilo. Le stazioni locali includeranno Al-Ayat, Al-Fashn, Al-Adwa, Bani Mazar, Samalout, Abu Qurqas, Mallawi e Dayrout. I lavori di indagine e costruzione di questa linea sono iniziati nel marzo 2022 da parte delle autorità egiziane, in particolare intorno a 6th October City e Fayoum, con una velocità di progetto prevista di 250 km/h, ma l'esercizio preliminare dei treni espressi a 230 km/h. Un'estensione di questa linea è stata annunciata nel maggio 2022 da Assuan attraverso Abu Simbel a Toshka e Sharq El Owainat nel deserto occidentale, nonché un'estensione fino a Wadi Halfa, in Sudan.

La **terza linea** è prevista a sud da Safaga attraverso Sahl Hasheesh, Hurghada, East Sohag, Qena e Qus, terminando a Luxor, per un costo totale di 2,7 miliardi di dollari con un tempo di costruzione di due anni.

61

Linee ferroviarie ad alta velocità pianificate in Sud Africa

Linee ferroviarie AV	Velocità massima	Lunghezza
Previste a lunga	(km/h)	(km)
scadenza in Sud Africa		
Johannesburg - Durban	300	610
Johannesburg - Musina	300	480
Johannesburg - Cape	300	1.300
Town	300	
Totale		2.390

Nell'agosto del 2021, il ministro dei Trasporti Fikile Mbalula ha annunciato l'avvio di uno studio di fattibilità sul corridoio di trasporto Johannesburg-Durban, che è stato approvato nel novembre 2023.

Nei prossimi anni dovrebbero essere effettuati gli studi di fattibilità del corridoio da Pretoria a Mbombela a Komatipoort e il corridoio da Johannesburg a Pretoria a Polokwane a Musina.

Negli Stati Uniti d'America sono stati identificati 11 corridoi ferroviari ad Alta Velocità da realizzare entro il 2050

High-speed lines in commercial operation in USA

LINE	MAXIMUM SPEED (km/h)	YEAR	DISTANCE (KILOMETRES)
NE Corridor (Boston - New York - Washington DC)	240	2000	735
			Total km = 735

High-speed lines under construction in USA

LINE	MAXIMUM SPEED (km/h)	YEAR	DISTANCE (KILOMETRES)
Madera - Fresno - Bakersfield	320	2029	192
San Francisco - San Jose	320	2033	82
			Total km = 274

High-speed lines planned in USA

LINE	MAXIMUM SPEED (km/h)	YEAR	DISTANCE (KILOMETRES)
Las Vegas - Victorville	320	2023	270
Houston - Dallas	330	2026	385
San Jose - Madera	320	2033	204
Bakersfield - Anaheim	350	2033	269
Victorville - Los Angeles	320	-	150
			Total km = 1,278

High-speed lines with long-term planning in USA

LINE	MAXIMUM SPEED (km/h)	YEAR	DISTANCE (KILOMETRES)
NEC Future (Boston - New York - Washington DC)	350	2040	735
Merced - Sacramento	-	-	180
Los Angeles - San Diego	-	-	269
Vancouver (Canada) - Seattle - Portland	-	-	509
Chicago - Milwaukee	-	-	149
Atlanta - Charlotte	-	-	370
Chicago - St. Louis	-	-	420
Chicago - Detroit	-	-	455
Kansas City - St. Louis	-	-	399
Chicago - Indianapolis	-	-	298
			Total km = 3,784

Fonte: Dati UIC **2022** – ATLAS High-Speed Rail

Negli Stati Uniti d'America sono stati identificati 11 corridoi ferroviari ad Alta Velocità da realizzare entro il 2050

VISION for HIGH-SPEED RAIL in AMERICA Northern New England Pacific Northwest Chicago Hub Network Keystone Southeast South Central Gulf Coast

High-speed lines in commercial operation in USA

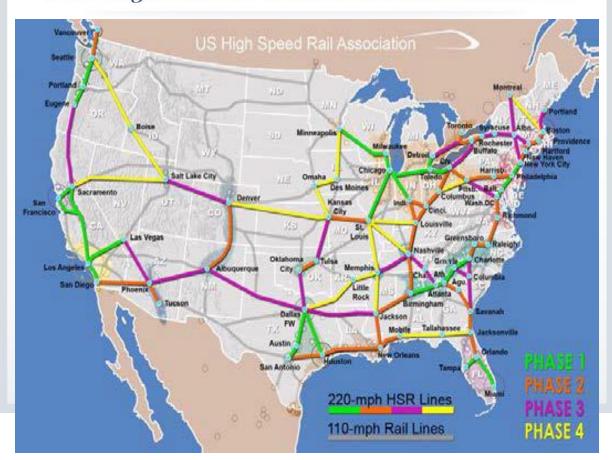
LINE	MAXIMUM SPEED (km/h)	YEAR	DISTANCE (KILOMETRES)
NE Corridor (Boston - New York - Washington DC)	240	2000	735
			Total km = 735

High-speed lines under construction in USA

LINE	MAXIMUM SPEED (km/h)	YEAR	DISTANCE (KILOMETRES)
Madera - Fresno - Bakersfield	320	2029	192
San Francisco - San Jose	320	2033	82
			Total km = 274

High-speed lines planned in USA

LINE	MAXIMUM SPEED (km/h)	YEAR	DISTANCE (KILOMETRES)
Las Vegas - Victorville	320	2023	270
Houston - Dallas	330	2026	385
San Jose - Madera	320	2033	204
Bakersfield - Anaheim	350	2033	269
Victorville - Los Angeles	320	-	150
			Total km = 1,278


High-speed lines with long-term planning in USA

LINE	MAXIMUM SPEED (km/h)	YEAR	DISTANCE (KILOMETRES)
NEC Future (Boston - New York - Washington DC)	350	2040	735
Merced - Sacramento	-	-	180
Los Angeles - San Diego	-	-	269
Vancouver (Canada) - Seattle - Portland	-	-	509
Chicago - Milwaukee	-	-	149
Atlanta - Charlotte	-	-	370
Chicago - St. Louis	-	-	420
Chicago - Detroit	-	-	455
Kansas City - St. Louis	-	-	399
Chicago - Indianapolis	-	-	298
			Total km = 3,784

Negli Stati Uniti d'America sono stati identificati 11 corridoi ferroviari ad Alta Velocità da realizzare entro il 2050

VISION for HIGH-SPEED RAIL in AMERICA

High-speed lines in commercial operation in USA

LINE	MAXIMUM SPEED (km/h)	YEAR	DISTANCE (KILOMETRES)
NE Corridor (Boston - New York - Washington DC)	240	2000	735
			Total km = 735

High-speed lines under construction in USA

LINE	MAXIMUM SPEED (km/h)	YEAR	DISTANCE (KILOMETRES)
Madera - Fresno - Bakersfield	320	2029	192
San Francisco - San Jose	320	2033	82
			Total km = 274

High-speed lines planned in USA

LINE	MAXIMUM SPEED (km/h)	YEAR	DISTANCE (KILOMETRES)
Las Vegas - Victorville	320	2023	270
Houston - Dallas	330	2026	385
San Jose - Madera	320	2033	204
Bakersfield - Anaheim	350	2033	269
Victorville - Los Angeles	320	-	150
			Total km = 1,278

High-speed lines with long-term planning in USA

LINE	MAXIMUM SPEED (km/h)	YEAR	DISTANCE (KILOMETRES)
NEC Future (Boston - New York - Washington DC)	350	2040	735
Merced - Sacramento	-	-	180
Los Angeles - San Diego	-	-	269
Vancouver (Canada) - Seattle - Portland	-	-	509
Chicago - Milwaukee	-	-	149
Atlanta - Charlotte	-	-	370
Chicago - St. Louis	-	-	420
Chicago - Detroit	-	-	455
Kansas City - St. Louis	-	-	399
Chicago - Indianapolis	-	-	298
			Total km = 3,784

Linee ferroviarie ad Alta Velocità in costruzione negli Stati Uniti d'America

California High-Speed Rail

La tratta ferroviaria AV Madera - Fresno – Bakersfield da 320 km/h dovrebbe essere ultimata nel 2029.

Tratta San Francisco - San Josè da 320 km/h, nel 2033

Commissione Studi e Progetti

QUADERNO N° 41

SERVIZI FERROVIARI VIAGGIATORI SULLA LUNGA DISTANZA Excursus mondiale e focus italiano

High-Speed Rail nel mondo

GRAZIE PER L'ATTENZIONE

Milano, 2 ottobre 2024

Giovanni Saccà